IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Viscosity characterization of the value function of an investment-consumption problem in presence of illiquid assets

Listed author(s):
  • Salvatore Federico
  • Paul Gassiat

We study a problem of optimal investment/consumption over an infinite horizon in a market consisting of a liquid and an illiquid asset. The liquid asset is observed and can be traded continuously, while the illiquid one can only be traded and observed at discrete random times corresponding to the jumps of a Poisson process. The problem is a nonstandard mixed discrete/continuous optimal control problem which we face by the dynamic programming approach. The main aim of the paper is to prove that the value function is the unique viscosity solution of an associated HJB equation. We then use such result to build a numerical algorithm allowing to approximate the value function and so to measure the cost of illiquidity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1211.1286
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1211.1286.

as
in new window

Length:
Date of creation: Nov 2012
Handle: RePEc:arx:papers:1211.1286
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
  2. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
  3. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2015. "Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation," Finance and Stochastics, Springer, vol. 19(2), pages 415-448, April.
  4. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
  5. Koichi Matsumoto, 2006. "Optimal portfolio of low liquid assets with a log-utility function," Finance and Stochastics, Springer, vol. 10(1), pages 121-145, 01.
  6. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84.
  7. Jouini, Elyes, 2000. "Price functionals with bid-ask spreads: an axiomatic approach," Journal of Mathematical Economics, Elsevier, vol. 34(4), pages 547-558, December.
  8. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2012. "Impact of time illiquidity in a mixed market without full observation," Papers 1211.1285, arXiv.org, revised Mar 2015.
  9. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183 World Scientific Publishing Co. Pte. Ltd..
  10. Huyên Pham & Peter Tankov, 2008. "A Model Of Optimal Consumption Under Liquidity Risk With Random Trading Times," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 613-627.
  11. Robert A. Jarrow, 2008. "Derivative Security Markets, Market Manipulation, and Option Pricing Theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 7, pages 131-151 World Scientific Publishing Co. Pte. Ltd..
  12. Soner, H. Mete & Cetin, Umut & Touzi, Nizar, 2010. "Option hedging for small investors under liquidity costs," LSE Research Online Documents on Economics 28992, London School of Economics and Political Science, LSE Library.
  13. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374.
  14. RØdiger Frey, 1998. "Perfect option hedging for a large trader," Finance and Stochastics, Springer, vol. 2(2), pages 115-141.
  15. Andrew Ang & Dimitris Papanikolaou & Mark M. Westerfield, 2014. "Portfolio Choice with Illiquid Assets," Management Science, INFORMS, vol. 60(11), pages 2737-2761, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1211.1286. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.