IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i9p1795-1820.html

Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management

Author

Listed:
  • Pham, Huyên

Abstract

We formulate and investigate a general stochastic control problem under a progressive enlargement of filtration. The global information is enlarged from a reference filtration and the knowledge of multiple random times together with associated marks when they occur. By working under a density hypothesis on the conditional joint distribution of the random times and marks, we prove a decomposition of the original stochastic control problem under the global filtration into classical stochastic control problems under the reference filtration, which is determined in a finite backward induction. Our method revisits and extends in particular stochastic control of diffusion processes with a finite number of jumps. This study is motivated by optimization problems arising in default risk management, and we provide applications of our decomposition result for the indifference pricing of defaultable claims, and the optimal investment under bilateral counterparty risk. The solutions are expressed in terms of BSDEs involving only Brownian filtration, and remarkably without jump terms coming from the default times and marks in the global filtration.

Suggested Citation

  • Pham, Huyên, 2010. "Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1795-1820, August.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1795-1820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00125-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    2. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    2. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    3. Thai Nguyen & Mitja Stadje, 2020. "Utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Mar 2024.
    4. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    5. Jessica Martin & Stéphane Villeneuve, 2021. "A Class of Explicit optimal contracts in the face of shutdown," Working Papers hal-03124102, HAL.
    6. Jessica Martin & Stéphane Villeneuve, 2023. "Risk-sharing and optimal contracts with large exogenous risks," Post-Print hal-04164688, HAL.
    7. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    8. Wahid Faidi, 2022. "Optimal investment and consumption under logarithmic utility and uncertainty model," Papers 2211.05367, arXiv.org, revised Jun 2024.
    9. Martin, Jessica & Villeneuve, Stéphane, 2021. "A Class of Explicit optimal contracts in the face of shutdown," TSE Working Papers 21-1183, Toulouse School of Economics (TSE), revised Apr 2022.
    10. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Papers 1706.01254, arXiv.org.
    11. Mastrolia, Thibaut, 2018. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 897-938.
    12. M. Nabil Kazi-Tani & Dylan Possamai & Chao Zhou, 2014. "Quadratic BSDEs with jumps: related non-linear expectations," Papers 1403.2730, arXiv.org.
    13. Grzegorz Hara'nczyk & Wojciech S{l}omczy'nski & Tomasz Zastawniak, 2007. "Relative and Discrete Utility Maximising Entropy," Papers 0709.1281, arXiv.org.
    14. Monique Jeanblanc & Thibaut Mastrolia & Dylan Possamaï & Anthony Réveillac, 2015. "Utility Maximization With Random Horizon: A Bsde Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-43, November.
    15. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    16. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Working Papers hal-01504473, HAL.
    17. Blessing, Jonas & Kupper, Michael & Sgarabottolo, Alessandro, 2025. "Discrete approximation of risk-based prices under volatility uncertainty," Center for Mathematical Economics Working Papers 742, Center for Mathematical Economics, Bielefeld University.
    18. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    19. Giuseppe Benedetti & Luciano Campi, 2013. "Utility indifference valuation for non-smooth payoffs with an application to power derivatives," Papers 1307.4591, arXiv.org.
    20. Marina Santacroce & Paola Siri & Barbara Trivellato, 2023. "Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion Models," Papers 2302.08253, arXiv.org.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1795-1820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.