IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v70y2009i1p47-75.html
   My bibliography  Save this article

Valuation of power plants by utility indifference and numerical computation

Author

Listed:
  • Arnaud Porchet
  • Nizar Touzi
  • Xavier Warin

Abstract

This paper presents a real option valuation model of a power plant, which accounts for physical constraints and market incompleteness. Switching costs, minimum on-off times, ramp rates, or non-constant heat rates are important characteristics that can lead, if neglected, to overestimated values. The existence of non-hedgeable uncertainties is also a feature of energy markets that can impact assets value. We use the utility indifference approach to define the value of the physical asset. We derive the associated mixed optimal switching-control problem and provide a characterization of its solution by means of a coupled system of reflected Backward Stochastic Differential Equations (BSDE). We relate this system to a system of variational inequalities, and we provide a numerical comparative study by implementing BSDE simulation algorithms, and PDE finite differences schemes. Copyright Springer-Verlag 2009

Suggested Citation

  • Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
  • Handle: RePEc:spr:mathme:v:70:y:2009:i:1:p:47-75
    DOI: 10.1007/s00186-008-0231-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0231-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0231-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    2. repec:dau:papers:123456789/607 is not listed on IDEAS
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Said Hamadène & Monique Jeanblanc, 2007. "On the Starting and Stopping Problem: Application in Reversible Investments," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 182-192, February.
    5. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    9. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    10. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
    12. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    2. Zhehao Huang & Zhenghui Li & Zhenzhen Wang, 2020. "Utility Indifference Valuation for Defaultable Corporate Bond with Credit Rating Migration," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    3. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    4. Magnus Perninge & Lennart Söder, 2014. "Irreversible investments with delayed reaction: an application to generation re-dispatch in power system operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 195-224, April.
    5. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    6. de Angelis, Tiziano & Ferrari, Giorgio & Hamadène, Saïd, 2018. "A Note on a New Existence Result for Reflected BSDES with Interconnected Obstacles," Center for Mathematical Economics Working Papers 591, Center for Mathematical Economics, Bielefeld University.
    7. Yunhong Li & Zuo Quan Xu & Xun Yu Zhou, 2023. "Robust utility maximization with intractable claims," Papers 2304.06938, arXiv.org, revised Jul 2023.
    8. Yunhong Li & Zuo Quan Xu & Xun Yu Zhou, 2023. "Robust utility maximisation with intractable claims," Finance and Stochastics, Springer, vol. 27(4), pages 985-1015, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    2. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    3. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    4. Abdullah Almansour and Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Magnus Perninge & Lennart Söder, 2014. "Irreversible investments with delayed reaction: an application to generation re-dispatch in power system operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 195-224, April.
    6. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    7. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    8. Dejian Tian, 2022. "Pricing principle via Tsallis relative entropy in incomplete market," Papers 2201.05316, arXiv.org, revised Oct 2022.
    9. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    10. Claudia Ceci & Anna Gerardi, 2011. "Utility indifference valuation for jump risky assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 34(2), pages 85-120, November.
    11. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    12. Kourouvakalis, Stylianos, 2008. "Méthodes numériques pour la valorisation d'options swings et autres problèmes sur les matières premières," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/116 edited by Geman, Hélyette.
    13. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    14. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    15. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    16. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    17. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    18. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    19. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    20. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:70:y:2009:i:1:p:47-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.