IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0508489.html
   My bibliography  Save this paper

Dynamic exponential utility indifference valuation

Author

Listed:
  • Michael Mania
  • Martin Schweizer

Abstract

We study the dynamics of the exponential utility indifference value process C(B;\alpha) for a contingent claim B in a semimartingale model with a general continuous filtration. We prove that C(B;\alpha) is (the first component of) the unique solution of a backward stochastic differential equation with a quadratic generator and obtain BMO estimates for the components of this solution. This allows us to prove several new results about C_t(B;\alpha). We obtain continuity in B and local Lipschitz-continuity in the risk aversion \alpha, uniformly in t, and we extend earlier results on the asymptotic behavior as \alpha\searrow0 or \alpha\nearrow\infty to our general setting. Moreover, we also prove convergence of the corresponding hedging strategies.

Suggested Citation

  • Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
  • Handle: RePEc:arx:papers:math/0508489
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0508489
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    2. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52.
    3. Becherer, Dirk, 2003. "Rational hedging and valuation of integrated risks under constant absolute risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 1-28, August.
    4. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0508489. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.