IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Exponential Utility Maximization under Partial Information

  • Michael Mania

    ()

  • Marina Santacroce

    ()

Registered author(s):

    We consider the exponential utility maximization problem under partial information. The underlying asset price process follows a continuous semimartingale and strategies have to be constructed when only part of the information in the market is available. We show that this problem is equivalent to a new exponential optimization problem, which is formulated in terms of observable processes. We prove that the value process of the reduced problem is the unique solution of a backward stochastic differential equation (BSDE), which characterizes the optimal strategy. We examine two particular cases of diffusion market models, for which an explicit solution has been provided. Finally, we study the issue of suffciency of partial information.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://servizi.sme.unito.it/icer_repec/RePEc/icr/wp2008/ICERwp24-08.pdf
    Download Restriction: no

    Paper provided by ICER - International Centre for Economic Research in its series ICER Working Papers - Applied Mathematics Series with number 24-2008.

    as
    in new window

    Length: 29 pages
    Date of creation: Jun 2008
    Date of revision:
    Handle: RePEc:icr:wpmath:24-2008
    Contact details of provider: Postal: Corso Unione Sovietica, 218bis - 10134 Torino - Italy
    Phone: +39 011 6706060
    Fax: +39 011 6706060
    Web page: http://www.esomas.unito.it/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, 05.
    2. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276.
    3. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    4. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE "q"-OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556.
    5. Martin Schweizer, 1994. "Risk-Minimizing Hedging Strategies Under Restricted Information," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 327-342.
    6. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373.
    7. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    8. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    9. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    10. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    11. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:24-2008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.