IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v12y2002i4p351-373.html
   My bibliography  Save this article

Valuation Of Claims On Nontraded Assets Using Utility Maximization

Author

Listed:
  • Vicky Henderson

Abstract

A topical problem is how to price and hedge claims on nontraded assets. A natural approach is to use for hedging purposes another similar asset or index which is traded. To model this situation, we introduce a second nontraded log Brownian asset into the well-known Merton investment model with power law and exponential utilities. The investor has an option on units of the nontraded asset and the question is how to price and hedge this random payoff. The presence of the second Brownian motion means that we are in the situation of incomplete markets. Employing utility maximization and duality methods we obtain a series approximation to the optimal hedge and reservation price using the power utility. The problem is simpler for the exponential utility, and in this case we derive an explicit representation for the price. Price and hedging strategy are computed for some example options and the results for the utilities are compared. Copyright 2002 Blackwell Publishers.

Suggested Citation

  • Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373.
  • Handle: RePEc:bla:mathfi:v:12:y:2002:i:4:p:351-373
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9965.2002.tb00129.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:12:y:2002:i:4:p:351-373. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.