IDEAS home Printed from
   My bibliography  Save this paper

Option pricing with linear market impact and non-linear Black and Scholes equations


  • Gregoire Loeper


We consider a model of linear market impact, and address the problem of replicating a contingent claim in this framework. We derive a non-linear Black-Scholes Equation that provides an exact replication strategy. This equation is fully non-linear and singular, but we show that it is well posed, and we prove existence of smooth solutions for a large class of final payoffs, both for constant and local volatility. To obtain regularity of the solutions, we develop an original method based on Legendre transforms. The close connections with the problem of hedging with it gamma constraints studied by Cheridito, Soner and Touzi and with the problem of hedging under it liquidity costs are discussed. We also derive a modified Black-Scholes formula valid for asymptotically small impact parameter, and finally provide numerical simulations as an illustration.

Suggested Citation

  • Gregoire Loeper, 2013. "Option pricing with linear market impact and non-linear Black and Scholes equations," Papers 1301.6252,, revised Aug 2016.
  • Handle: RePEc:arx:papers:1301.6252

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84.
    2. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374.
    3. Liu, Hong & Yong, Jiongmin, 2005. "Option pricing with an illiquid underlying asset market," Journal of Economic Dynamics and Control, Elsevier, vol. 29(12), pages 2125-2156, December.
    4. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    5. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Frédéric Abergel & Grégoire Loeper, 2013. "Pricing and hedging contingent claims with liquidity costs and market impact," Working Papers hal-00802402, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.6252. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.