IDEAS home Printed from https://ideas.repec.org/p/anp/en2005/029.html
   My bibliography  Save this paper

Forecasting Quarterly Brazilian Gdp Growth Rate With Linear And Nonlinear Diffusion Index Models

Author

Listed:
  • Roberto Tatiwa Ferreira
  • Luiz Ivan de Melo Castelar

Abstract

The present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. The non-linear diffusion index models used in this work are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model.

Suggested Citation

  • Roberto Tatiwa Ferreira & Luiz Ivan de Melo Castelar, 2005. "Forecasting Quarterly Brazilian Gdp Growth Rate With Linear And Nonlinear Diffusion Index Models," Anais do XXXIII Encontro Nacional de Economia [Proceedings of the 33rd Brazilian Economics Meeting] 029, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  • Handle: RePEc:anp:en2005:029
    as

    Download full text from publisher

    File URL: http://www.anpec.org.br/encontro2005/artigos/A05A029.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Forni, Mario & Reichlin, Lucrezia, 1995. "Let's Get Real: A Dynamic Factor Analytical Approach to Disaggregated Business Cycle," CEPR Discussion Papers 1244, C.E.P.R. Discussion Papers.
    4. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    5. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    6. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, January-J.
    7. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    8. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    11. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    12. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    13. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    14. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    15. Marcelle Chauvet & Elcyon C. R. Lima & Brisne Vasquez, 2002. "Forecasting Brazilian output in the presence of breaks: a comparison of linear and nonlinear models," FRB Atlanta Working Paper 2002-28, Federal Reserve Bank of Atlanta.
    16. Marc Brisson & Bryan Campbell & John W. Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    17. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    18. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    19. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    20. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
    21. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herman Kamil & José David Pulido & José Luis Torres, 2010. "El IMACO": un índice mensual líder de la actividad económica en Colombia"," BORRADORES DE ECONOMIA 007129, BANCO DE LA REPÚBLICA.
    2. Jorge L.M. Andraz & Pedro M.D.C.B. Gouveia & Paulo M.M. Rodrigues, 2009. "Modelling and Forecasting the UK Tourism Growth Cycle in Algarve," Tourism Economics, , vol. 15(2), pages 323-338, June.
    3. Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011. "Modelos Lineares e Não Lineares da Curva de Phillips para Previsão da Taxa de Inflação no Brasil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(3), September.
    4. Herman Kamil & José David Pulido & José Luis Torres, 2010. "El "IMACO": un índice mensual de la actividad económica en Colombia," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(4), pages 495-548, octubre-d.
    5. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    6. Desirée Castrillo R. & Carlos Mora G. & Carlos Torres G., 2010. "Mecanismos de transmisión de la política monetaria en Costa Rica: periodo 1991-2007," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(4), pages 549-599, octubre-d.
    7. Morais, Igor Alexandre C. & Chauvet, Marcelle, 2011. "Leading Indicators for the Capital Goods Industry," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    8. Marco Antonio Laguna Vargas, 2010. "Características de la inflación importada en Bolivia: ¿puede contenerse con política cambiaria?," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(4), pages 463-493, octubre-d.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    6. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    7. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    8. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    9. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    10. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    11. Corielli, Francesco & Marcellino, Massimiliano, 2006. "Factor based index tracking," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
    12. Massimiliano Marcellino & George Kapetanios, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 305, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    13. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.
    14. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    15. Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
    16. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    17. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    18. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    19. Kapetanios, George & Marcellino, Massimiliano, 2006. "Impulse Response Functions from Structural Dynamic Factor Models: A Monte Carlo Evaluation," CEPR Discussion Papers 5621, C.E.P.R. Discussion Papers.
    20. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anp:en2005:029. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/anpecea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Zadra Armond (email available below). General contact details of provider: https://edirc.repec.org/data/anpecea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.