IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2018001.html
   My bibliography  Save this paper

Monte Carlo integration with a growing number of control variates

Author

Listed:
  • Portier, Francois
  • Segers, Johan

Abstract

No abstract is available for this item.

Suggested Citation

  • Portier, Francois & Segers, Johan, 2018. "Monte Carlo integration with a growing number of control variates," LIDAM Discussion Papers ISBA 2018001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2018001
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A195210/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(4), pages 518-552, December.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    3. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    4. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengpei Li & Haoxian Chen & Jiahe Lin & Arkin Gupta & Xiaowei Tan & Honglei Zhao & Gang Xu & Yuriy Nevmyvaka & Agostino Capponi & Henry Lam, 2024. "Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate," Papers 2412.11257, arXiv.org, revised Jun 2025.
    2. Ke-Lin Du & Rengong Zhang & Bingchun Jiang & Jie Zeng & Jiabin Lu, 2025. "Understanding Machine Learning Principles: Learning, Inference, Generalization, and Computational Learning Theory," Mathematics, MDPI, vol. 13(3), pages 1-56, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Morey & Kathleen Greer Rossmann, 2003. "Using Stated-Preference Questions to Investigate Variations in Willingness to Pay for Preserving Marble Monuments: Classic Heterogeneity, Random Parameters, and Mixture Models," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 27(3), pages 215-229, November.
    2. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Differentiated Road Pricing, Express Lanes and Carpools: Exploiting Heterogeneous Preferences in Policy Design," Working Papers 050616, University of California-Irvine, Department of Economics, revised Mar 2006.
    3. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    4. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    5. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    6. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    7. Bernard Fortin & Nicolas Jacquemet & Bruce Shearer, 2008. "Policy Analysis in Health-Services Market: Accounting for Quality and Quantity," Annals of Economics and Statistics, GENES, issue 91-92, pages 293-319.
    8. Xiaodong Gong & Arthur van Soest, 2002. "Family Structure and Female Labor Supply in Mexico City," Journal of Human Resources, University of Wisconsin Press, vol. 37(1), pages 163-191.
    9. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    10. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    11. Shabbar Jaffry & Alexandros Apostolakis, 2011. "Evaluating individual preferences for the British Museum," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 35(1), pages 49-75, February.
    12. Norton, Daniel & Hynes, Stephen, 2014. "Valuing the non-market benefits arising from the implementation of the EU Marine Strategy Framework Directive," Ecosystem Services, Elsevier, vol. 10(C), pages 84-96.
    13. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    14. Ufer, Danielle J. & Ortega, David L. & Wolf, Christopher A. & McKendree, Melissa & Swanson, Janice, 2022. "Getting past the gatekeeper: Key motivations of dairy farmer intent to adopt animal health and welfare-improving biotechnology," Food Policy, Elsevier, vol. 112(C).
    15. Kim, Do-hun & Sjølie, Hanne K. & Aguilar, Francisco X., 2024. "Psychological distances to climate change and public preferences for biodiversity-augmenting attributes in family-owned production forests," Forest Policy and Economics, Elsevier, vol. 163(C).
    16. Gustavo Ahumada & Victor Iturra & Mauricio Sarrias, 2020. "We Do Not Have the Same Tastes! Evaluating Individual Heterogeneity in the Preferences for Amenities," Journal of Happiness Studies, Springer, vol. 21(1), pages 53-74, January.
    17. Mauricio Sarrias, 2020. "Random Parameters and Spatial Heterogeneity using Rchoice in R," REGION, European Regional Science Association, vol. 7, pages 1-19.
    18. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    19. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    20. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2018001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.