IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.11257.html
   My bibliography  Save this paper

Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate

Author

Listed:
  • Fengpei Li
  • Haoxian Chen
  • Jiahe Lin
  • Arkin Gupta
  • Xiaowei Tan
  • Honglei Zhao
  • Gang Xu
  • Yuriy Nevmyvaka
  • Agostino Capponi
  • Henry Lam

Abstract

For many complex simulation tasks spanning areas such as healthcare, engineering, and finance, Monte Carlo (MC) methods are invaluable due to their unbiased estimates and precise error quantification. Nevertheless, Monte Carlo simulations often become computationally prohibitive, especially for nested, multi-level, or path-dependent evaluations lacking effective variance reduction techniques. While machine learning (ML) surrogates appear as natural alternatives, naive replacements typically introduce unquantifiable biases. We address this challenge by introducing Prediction-Enhanced Monte Carlo (PEMC), a framework that leverages modern ML models as learned predictors, using cheap and parallelizable simulation as features, to output unbiased evaluation with reduced variance and runtime. PEMC can also be viewed as a "modernized" view of control variates, where we consider the overall computation-cost-aware variance reduction instead of per-replication reduction, while bypassing the closed-form mean function requirement and maintaining the advantageous unbiasedness and uncertainty quantifiability of Monte Carlo. We illustrate PEMC's broader efficacy and versatility through three examples: first, equity derivatives such as variance swaps under stochastic local volatility models; second, interest rate derivatives such as swaption pricing under the Heath-Jarrow-Morton (HJM) interest-rate model. Finally, we showcase PEMC in a socially significant context - ambulance dispatch and hospital load balancing - where accurate mortality rate estimates are key for ethically sensitive decision-making. Across these diverse scenarios, PEMC consistently reduces variance while preserving unbiasedness, highlighting its potential as a powerful enhancement to standard Monte Carlo baselines.

Suggested Citation

  • Fengpei Li & Haoxian Chen & Jiahe Lin & Arkin Gupta & Xiaowei Tan & Honglei Zhao & Gang Xu & Yuriy Nevmyvaka & Agostino Capponi & Henry Lam, 2024. "Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate," Papers 2412.11257, arXiv.org, revised Jun 2025.
  • Handle: RePEc:arx:papers:2412.11257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.11257
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    5. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    6. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    7. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    8. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    9. Portier, Francois & Segers, Johan, 2018. "Monte Carlo integration with a growing number of control variates," LIDAM Discussion Papers ISBA 2018001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    11. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    4. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    5. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    6. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    7. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    8. Belén León-Pérez & Manuel Moreno, 2024. "Fixed-income average options: a pricing approach based on Gaussian mean-reverting cyclical models," Annals of Operations Research, Springer, vol. 337(1), pages 167-196, June.
    9. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    10. Xiaoqun Wang, 2006. "On the Effects of Dimension Reduction Techniques on Some High-Dimensional Problems in Finance," Operations Research, INFORMS, vol. 54(6), pages 1063-1078, December.
    11. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    12. repec:wyi:journl:002108 is not listed on IDEAS
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    14. Nowman, K. Ben & Saltoglu, Burak, 2003. "Continuous time and nonparametric modelling of U.S. interest rate models," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 25-34.
    15. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    16. Flavio Angelini & Stefano Herzel, 2015. "Evaluating discrete dynamic strategies in affine models," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 313-326, February.
    17. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Victor Vaugirard, 2003. "Valuing catastrophe bonds by Monte Carlo simulations," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 75-90.
    20. V. Cvsa & P. Ritchken, 2001. "Pricing Claims Under GARCH-Level Dependent Interest Rate Processes," Management Science, INFORMS, vol. 47(12), pages 1693-1711, December.
    21. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.11257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.