IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332944.html
   My bibliography  Save this paper

Can the evolution of the European bioeconomy contribute to the Sustainable Development Goals?

Author

Listed:
  • Philippidis, George
  • Shutes, Lindsay
  • van Meijl, Hans
  • M'barek, Robert
  • Ronzon, Tevecia

Abstract

Launched and adopted on 13 February 2012, Europe's Bioeconomy Strategy addresses the production of renewable biological resources and their conversion into vital products and bio-energy. The Strategy proposes answers to the challenges Europe and the world are facing, in particular the increasing populations that must be fed, depletion of natural resources, impacts of ever increasing environmental pressures and climate change. In addition, on 25 September 2015, the UN General Assembly formally adopted the universal, integrated and transformative 2030 Agenda for Sustainable Development, along with a set of 17 Sustainable Development Goals and 169 associated targets. The EU has committed to implement the SDGs both in its internal and external policies. A newly developed MAGNET SDG Insights module enables the impact of policy on SDG indicators to be evaluated in an ex-ante framework. The module carries the advantage of translating complex modelling results into the impact on SDG indicators which are fast becoming the common language of global impact assessment. Specifically, the new module includes 60 official and additional indicators, covering 12 of the 17 SDGs for each region of the world. This paper evaluates a range of selected scenarios in terms of the impacts on the SDGs, using the Modular Applied GeNeral Equilibrium Tool (MAGNET), a GTAP-based global economic simulation extended to include second generation biofuels, bioelectricity and waste, biochemicals and a suite of SDG indicators. This approach provides a unique insight into the synergies or trade-offs in scenarios where several market instruments are operating simultaneously and allows for a more coherent approach to policy implementation. The results show the contribution of economic development and policy changes to societal challenges in 2030, both in terms of synergies and trade-offs.

Suggested Citation

  • Philippidis, George & Shutes, Lindsay & van Meijl, Hans & M'barek, Robert & Ronzon, Tevecia, 2018. "Can the evolution of the European bioeconomy contribute to the Sustainable Development Goals?," Conference papers 332944, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332944
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332944/files/8896.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    2. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    3. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Philippidis, George & Bartelings, Heleen & Smeets, Edward, 2018. "Sailing into Unchartered Waters: Plotting a Course for EU Bio-Based Sectors," Ecological Economics, Elsevier, vol. 147(C), pages 410-421.
    5. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Philippidis & Robert M’barek & Emanuele Ferrari, 2016. "Drivers of the European Bioeconomy in Transition (BioEconomy2030): an exploratory, model-based assessment," JRC Research Reports JRC98160, Joint Research Centre.
    2. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    3. Philippidis, George & Bartelings, Heleen & Smeets, Edward, 2018. "Sailing into Unchartered Waters: Plotting a Course for EU Bio-Based Sectors," Ecological Economics, Elsevier, vol. 147(C), pages 410-421.
    4. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    5. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    6. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    7. Tsung-Chen Lee & Hsiao-Chi Chen & Shi-Miin Liu, 2013. "Optimal strategic regulations in international emissions trading under imperfect competition," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(1), pages 39-57, January.
    8. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    9. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    10. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    12. Bosello, Francesco & Orecchia, Carlo & Parrado, Ramiro, 2013. "The additional contribution of non-CO2 mitigation in climate policy costs and efforts in Europe," Conference papers 332363, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    15. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Khellaf, Ayache & Nihou, Abdelaziz & Baray, Abdoul G. & van der Mensbrugghe, Dominique & Liverani, Andrea & Tyner, Wallace E., 2014. "Socioeconomic impacts of green energy growth policy in Morocco - a general equilibrium analysis," Conference papers 332493, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 31(1), pages 26-44.
    18. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    19. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    20. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.