IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/211208.html
   My bibliography  Save this paper

Marginal Abatement Cost Curves for Global Agricultural Non-CO2 Emissions

Author

Listed:
  • Beach, Robert
  • Creason, Jared
  • Ohrel, Sara
  • Ragnauth, Shaun
  • Ogle, Stephen
  • Li, Changsheng
  • Salas, William

Abstract

Agricultural emissions account for 53% of 2010 global non-CO2 emissions and are projected to increase substantially in the future, especially in Asia, Latin America and Africa. While agriculture is a substantial source of emissions, it is also a potential source of cost-effective non-CO2 GHG abatement. Previous “bottom-up” analyses provided marginal abatement cost (MAC) curves for use in modeling these options within economy-wide and global mitigation analyses. In this study, we utilize updated economic and biophysical data and models to extend and improve upon previous work. Key enhancements include incorporation of additional mitigation options, updated baseline emissions projections, greater spatial disaggregation, and development of MAC curves to 2030. MAC curves are generated accounting for net GHG reductions, yield effects, livestock productivity effects, commodity prices, labor requirements, and capital costs where appropriate. MAC curves are developed at the country level and reveal large potential for non-CO2 GHG mitigation at low carbon prices.

Suggested Citation

  • Beach, Robert & Creason, Jared & Ohrel, Sara & Ragnauth, Shaun & Ogle, Stephen & Li, Changsheng & Salas, William, 2015. "Marginal Abatement Cost Curves for Global Agricultural Non-CO2 Emissions," 2015 Conference, August 9-14, 2015, Milan, Italy 211208, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:211208
    DOI: 10.22004/ag.econ.211208
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/211208/files/Beach-Marginal%20Abatement%20Cost%20Curves%20for%20Global%20Agricultural%20Non-CO2%20Emissions-1147.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.211208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    2. Baker, Justin Scott & McCarl, Bruce A. & Murray, Brian C. & Rose, Steven K. & Alig, Ralph J. & Adams, Darius M. & Latta, Gregory S. & Beach, Robert H. & Daigneault, Adam J., 2010. "Net Farm Income and Land Use under a U.S. Greenhouse Gas Cap and Trade," Policy Issues 93683, Agricultural and Applied Economics Association.
    3. Robert H. Beach & Benjamin J. DeAngelo & Steven Rose & Changsheng Li & William Salas & Stephen J. DelGrosso, 2008. "Mitigation potential and costs for global agricultural greenhouse gas emissions-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 109-115, March.
    4. Benjamin J. DeAngelo, Francisco C. de la Chesnaye, Robert H. Beach, Allan Sommer and Brian C. Murray, 2006. "Methane and Nitrous Oxide Mitigation in Agriculture," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 89-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    2. Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, Open Access Journal, vol. 10(5), pages 1-23, May.
    3. Jing Hou & Bo Hou, 2019. "Farmers’ Adoption of Low-Carbon Agriculture in China: An Extended Theory of the Planned Behavior Model," Sustainability, MDPI, Open Access Journal, vol. 11(5), pages 1-20, March.
    4. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    5. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de, July.
    6. Nigel Key & Gregoire Tallard, 2012. "Mitigating methane emissions from livestock: a global analysis of sectoral policies," Climatic Change, Springer, vol. 112(2), pages 387-414, May.
    7. Fredrik Hedenus & Stefan Wirsenius & Daniel Johansson, 2014. "The importance of reduced meat and dairy consumption for meeting stringent climate change targets," Climatic Change, Springer, vol. 124(1), pages 79-91, May.
    8. Laure Bamière & Pierre‐Alain Jayet & Salomé Kahindo & Elsa Martin, 2021. "Carbon sequestration in French agricultural soils: A spatial economic evaluation," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 301-316, March.
    9. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    10. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    11. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    12. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    13. Ngonidzashe Chirinda & Laura Arenas & Maria Katto & Sandra Loaiza & Fernando Correa & Manabu Isthitani & Ana Maria Loboguerrero & Deissy Martínez-Barón & Eduardo Graterol & Santiago Jaramillo & Carlos, 2018. "Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality," Sustainability, MDPI, Open Access Journal, vol. 10(3), pages 1-16, March.
    14. Ekholm, Tommi & Soimakallio, Sampo & Moltmann, Sara & Höhne, Niklas & Syri, Sanna & Savolainen, Ilkka, 2010. "Effort sharing in ambitious, global climate change mitigation scenarios," Energy Policy, Elsevier, vol. 38(4), pages 1797-1810, April.
    15. Stephen M. Ogle & Bruce A. McCarl & Justin Baker & Stephen J. Grosso & Paul R. Adler & Keith Paustian & William J. Parton, 2016. "Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1197-1212, December.
    16. Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
    17. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    18. Rosburg, Alicia Sue, 2012. "Essays concerning the cellulosic biofuel industry," ISU General Staff Papers 201201010800003732, Iowa State University, Department of Economics.
    19. Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
    20. Roeder, Norbert & Osterburg, Bernhard, 2011. "Reducing GHG Emissions by Abandoning Agricultural Land use on Organic Soils - A Cost Assessment," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115983, European Association of Agricultural Economists.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:211208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.