IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i3p441-461.html
   My bibliography  Save this article

Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality

Author

Listed:
  • J. West
  • Arlene Fiore
  • Larry Horowitz

Abstract

Methane emissions contribute to global baseline surface ozone concentrations; therefore reducing methane to address climate change has significant co-benefits for air quality and human health. We analyze the costs of reducing methane from 2005 to 2030, as might be motivated to reduce climate forcing, and the resulting benefits from lower surface ozone to 2060. We construct three plausible scenarios of methane emission reductions, relative to a base scenario, ranging from 75 to 180 Mton CH 4 yr −1 decreased in 2030. Using compilations of the global availability of methane emission reductions, the least aggressive scenario (A) does not incur any positive marginal costs to 2030, while the most aggressive (C) requires discovery of new methane abatement technologies. The present value of implementation costs for Scenario B are nearly equal to Scenario A, as it implements cost-saving options more quickly, even though it adopts positive cost measures. We estimate the avoided premature human mortalities due to surface ozone decreases by combining transient full-chemistry simulations of these scenarios in a global atmospheric chemical transport model, with concentration-mortality relationships from a short-term epidemiologic study and projected global population. An estimated 38,000 premature mortalities are avoided globally in 2030 under Scenario B. As benefits of methane reduction are positive but costs are negative for Scenario A, it is justified regardless of how avoided mortalities are valued. The incremental benefits of Scenario B also far outweigh the incremental costs. Scenario C has incremental costs that roughly equal benefits, only when technological learning is assumed. Benefits within industrialized nations alone also exceed costs in Scenarios A and B, assuming that the lowest-cost emission reductions, including those in developing nations, are implemented. Monetized co-benefits of methane mitigation for human health are estimated to be $13–17 per ton CO 2 eq, with a wider range possible under alternative assumptions. Methane mitigation can be a cost-effective means of long-term and international air quality management, with concurrent benefits for climate. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • J. West & Arlene Fiore & Larry Horowitz, 2012. "Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality," Climatic Change, Springer, vol. 114(3), pages 441-461, October.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:3:p:441-461
    DOI: 10.1007/s10584-012-0426-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0426-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0426-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Sitch & P. M. Cox & W. J. Collins & C. Huntingford, 2007. "Indirect radiative forcing of climate change through ozone effects on the land-carbon sink," Nature, Nature, vol. 448(7155), pages 791-794, August.
    2. K. Aunan & H.E. Mestl & H.M. Seip & J. Fang & D.O'Connor & H. Vennemo & F. Zhai, 2003. "Co-benefits of CO 2 -reducing policies in China - a matter of scale?," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 3(3), pages 287-304.
    3. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    4. J. Reilly & R. Prinn & J. Harnisch & J. Fitzmaurice & H. Jacoby & D. Kicklighter & J. Melillo & P. Stone & A. Sokolov & C. Wang, 1999. "Multi-gas assessment of the Kyoto Protocol," Nature, Nature, vol. 401(6753), pages 549-555, October.
    5. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    6. Benjamin J. DeAngelo, Francisco C. de la Chesnaye, Robert H. Beach, Allan Sommer and Brian C. Murray, 2006. "Methane and Nitrous Oxide Mitigation in Agriculture," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 89-108.
    7. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    8. Syri, Sanna & Amann, Markus & Capros, Pantelis & Mantzos, Leonidas & Cofala, Janusz & Klimont, Zbigniew, 2001. "Low-CO2 energy pathways and regional air pollution in Europe," Energy Policy, Elsevier, vol. 29(11), pages 871-884, September.
    9. Ekin, Paul, 1996. "The secondary benefits of CO2 abatement: How much emission reduction do they justify?," Ecological Economics, Elsevier, vol. 16(1), pages 13-24, January.
    10. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
    11. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    12. Rubin, Edward S & Taylor, Margaret R & Yeh, Sonia & Hounshell, David A, 2004. "Learning curves for environmental technology and their importance for climate policy analysis," Energy, Elsevier, vol. 29(9), pages 1551-1559.
    13. Dutton, John M. & Thomas, Annie & Butler, John E., 1984. "The History of Progress Functions as a Managerial Technology," Business History Review, Cambridge University Press, vol. 58(2), pages 204-233, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    2. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    3. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    4. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    5. Daniel Johansson, 2012. "Economics- and physical-based metrics for comparing greenhouse gases," Climatic Change, Springer, vol. 110(1), pages 123-141, January.
    6. Alain Bernard & Marc Vielle, 2008. "GEMINI-E3, a general equilibrium model of international–national interactions between economy, energy and the environment," Computational Management Science, Springer, vol. 5(3), pages 173-206, May.
    7. Johansson, Daniel J.A., 2009. "Economics vs. Physical-based Metrics for Relative Greenhouse Gas Valuations," Working Papers in Economics 363, University of Gothenburg, Department of Economics.
    8. Jessica Strefler & Gunnar Luderer & Tino Aboumahboub & Elmar Kriegler, 2014. "Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment," Climatic Change, Springer, vol. 125(3), pages 319-331, August.
    9. Danmeng Feng & Xiang Fan & Xiaoyuan Chu, 2017. "The Spillover Effect of Ecological Environment Protection on Poverty Reduction," Applied Economics and Finance, Redfame publishing, vol. 4(4), pages 59-65, July.
    10. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 91-124.
    11. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 Greenhouse Gas Mitigation Modeling with Marginal Abatement Cost Curves: Technical Change, Emission Scenarios and Policy Costs," Working Papers 2013.110, Fondazione Eni Enrico Mattei.
    12. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    13. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    14. Khellaf, Ayache & Nihou, Abdelaziz & Baray, Abdoul G. & van der Mensbrugghe, Dominique & Liverani, Andrea & Tyner, Wallace E., 2014. "Socioeconomic impacts of green energy growth policy in Morocco - a general equilibrium analysis," Conference papers 332493, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Nam, Kyung-Min & Selin, Noelle E. & Reilly, John M. & Paltsev, Sergey, 2010. "Measuring welfare loss caused by air pollution in Europe: A CGE analysis," Energy Policy, Elsevier, vol. 38(9), pages 5059-5071, September.
    16. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    17. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    18. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    19. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    20. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:3:p:441-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.