IDEAS home Printed from https://ideas.repec.org/p/ags/gewi10/93963.html
   My bibliography  Save this paper

Technologies And Localized Technical Change

Author

Listed:
  • Morrison Paul, Catherine J.
  • Sauer, Johannes

Abstract

This contribution is based on the notion that different technologies are present in an industry. These different technologies result in differential “drivers” of economic performance depending on the kind of technology used by the individual firm. In a first step different technologies are empirically distinguished. Subsequently, the associated production patterns are approximated and the respective change over time is estimated. A latent class modelling approach is used to distinguish different technologies for a representative sample of E.U. dairy producers as an industry exhibiting significant structural changes and differences in production systems in the past decades. The production technology is modelled and evaluated by using the flexible functional form of a transformation function and measures of first- and second-order elasticities. We find that overall (average) measures do not well reflect individual firms’ production patterns if the technology of an industry is heterogeneous. If there is more than one type of production frontier embodied in the data, it should be recognized that different firms may exhibit very different output or input intensities and changes associated with different production systems. In particular, in the context of localized technical change, firms with different technologies can be expected to show different technical change patterns, both in terms of overall magnitudes and associated relative output and input mix changes. Assuming a homogenous technology would result in inefficient policy recommendations leading to suboptimal industry outcomes.

Suggested Citation

  • Morrison Paul, Catherine J. & Sauer, Johannes, 2010. "Technologies And Localized Technical Change," 50th Annual Conference, Braunschweig, Germany, September 29-October 1, 2010 93963, German Association of Agricultural Economists (GEWISOLA).
  • Handle: RePEc:ags:gewi10:93963
    DOI: 10.22004/ag.econ.93963
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/93963/files/D2_3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.93963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. C. Antonelli, 2007. "Localized Technological Change," Chapters, in: Horst Hanusch & Andreas Pyka (ed.), Elgar Companion to Neo-Schumpeterian Economics, chapter 16, Edward Elgar Publishing.
    2. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.
    3. Zvi Griliches, 1957. "Specification Bias in Estimates of Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 39(1), pages 8-20.
    4. Álvarez, Antonio & del Corral, Julio & Solís, Daniel & Pérez, José Antonio, 2007. "Does Intensification Help to Improve the Economic Efficiency of Dairy Farms?," Efficiency Series Papers 2007/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    6. Carol Newman & Alan Matthews, 2006. "The productivity performance of Irish dairy farms 1984–2000: a multiple output distance function approach," Journal of Productivity Analysis, Springer, vol. 26(2), pages 191-205, October.
    7. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    8. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    9. Gillespie, Jeffrey M. & Nehring, Richard F. & Hallahan, Charles B. & Morrison Paul, Catherine J. & Sandretto, Carmen L., 2008. "Economics and Productivity of Organic versus Non-organic Dairy Farms in the United States," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44415, European Association of Agricultural Economists.
    10. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    11. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    12. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    13. Paul, Catherine J. Morrison & Nehring, Richard, 2005. "Product diversification, production systems, and economic performance in U.S. agricultural production," Journal of Econometrics, Elsevier, vol. 126(2), pages 525-548, June.
    14. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053.
    15. Ho-chuan Huang, 2004. "Estimation of Technical Inefficiencies with Heterogeneous Technologies," Journal of Productivity Analysis, Springer, vol. 21(3), pages 277-296, May.
    16. Diewert, W. E., 1973. "Functional forms for profit and transformation functions," Journal of Economic Theory, Elsevier, vol. 6(3), pages 284-316, June.
    17. Kalirajan, K P & Obwona, M B, 1994. "Frontier Production Function: The Stochastic Coefficients Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 87-96, February.
    18. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    19. Gallant, A Ronald & Holly, Alberto, 1980. "Statistical Inference in an Implicit, Nonlinear, Simultaneous Equation Model in the Context of Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 48(3), pages 697-720, April.
    20. Felthoven, Ronald G. & Morrison Paul, Catherine J. & Torres, Marcelo, 2006. "Measuring Productivity Change and Its Components for Fisheries: The Case of the Alaskan Pollock Fishery, 1994-2003," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25721, International Association of Agricultural Economists.
    21. Joaquin Maudos & Jose Pastor & Francisco Perez, 2002. "Competition and efficiency in the Spanish banking sector: the importance of specialization," Applied Financial Economics, Taylor & Francis Journals, vol. 12(7), pages 505-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Key, Nigel D. & Latruffe, Laure & Sauer, Johannes, 2010. "Subsidies, production structure and technical change – A cross-country comparison," 114th Seminar, April 15-16, 2010, Berlin, Germany 61109, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Sauer, 2011. "The Empirical Identification of Heterogenous Technologies and Technical Change," Post-Print hal-00768585, HAL.
    2. Johannes Sauer & Catherine J. Morrison Paul, 2013. "The empirical identification of heterogeneous technologies and technical change," Applied Economics, Taylor & Francis Journals, vol. 45(11), pages 1461-1479, April.
    3. Mohamed Chaffai & Patrick Plane, 2017. "Firm Productivity, Technology and Export Status, What Can We Learn from Egyptian Industries?," Working Papers 1134, Economic Research Forum, revised 09 Jun 2017.
    4. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    5. Sauer, J. & Davidova, S. & Gorton, M., 2013. "Land Fragmentation and Market Integration- Heterogenous Technologies in Kosovo," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 48, March.
    6. Orea, Luis & Pérez, Jose A. & Roibás, David, 2013. "Evaluating the double effect of land fragmentation on technology choice and dairy farm productivity: A latent class model approach," Efficiency Series Papers 2013/08, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    7. Bahta, S. & Temoso, O. & Mekonnen, D. & Malope, P. & Staal, S., 2018. "Technical efficiency of beef production in agricultural districts of Botswana: A Latent Class Stochastic Frontier Model Approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277207, International Association of Agricultural Economists.
    8. Juan Cabas Monje & Bouali Guesmi & Amer Ait Sidhoum & José María Gil, 2023. "Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 688-703, October.
    9. Elizabeth Ahikiriza & Jef Meensel & Xavier Gellynck & Ludwig Lauwers, 2021. "Heterogeneity in frontier analysis: does it matter for benchmarking farms?," Journal of Productivity Analysis, Springer, vol. 56(2), pages 69-84, December.
    10. Sauer, Johannes & Davidova, Sophia & Gorton, Matthew, 2012. "Land fragmentation, market integration and farm efficiency: empirical evidence from Kosovo," 86th Annual Conference, April 16-18, 2012, Warwick University, Coventry, UK 134968, Agricultural Economics Society.
    11. Kellermann, Magnus & Salhofer, Klaus, 2011. "Comparing productivity growth in conventional and grassland dairy farms," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114763, European Association of Agricultural Economists.
    12. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    13. Fertő, Imre & Baráth, Lajos, 2013. "Heterogenitás és technikai hatékonyság - a magyar specializált szántóföldi növénytermesztő üzemek esete [Heterogeneity and technical efficiency - the case of Hungarys specialized arable crop produc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 650-669.
    14. Jerzy Marzec & Andrzej Pisulewski, 2020. "Pomiar efektywności zróżnicowanych technologicznie gospodarstw rolnych w Unii Europejskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 111-137.
    15. Laure Latruffe & Andreas Niedermayr & Yann Desjeux & K Herve Dakpo & Kassoum Ayouba & Lena Schaller & Jochen Kantelhardt & Yan Jin & Kevin Kilcline & Mary Ryan & Cathal O’Donoghue, 2023. "Identifying and assessing intensive and extensive technologies in European dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1482-1519.
    16. Alvarez, Antonio & Arias, Carlos, 2015. "Effects of switching between production systems in dairy farming," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(1), pages 1-16, April.
    17. Alice Bertoletti & Geraint Johnes, 2021. "Efficiency in university-industry collaboration: an analysis of UK higher education institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7679-7714, September.
    18. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.
    19. Álvarez, Antonio & Arias, Carlos, 2013. "Are dairy farms becoming more intensive? Impact on farm efficiency," Efficiency Series Papers 2013/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    20. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2011. "Technical efficiency and technology gaps in beef cattle production systems in Kenya: A stochastic metafrontier analysis," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108947, Agricultural Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gewi10:93963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gewisea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.