IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03675565.html
   My bibliography  Save this paper

Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms

Author

Listed:
  • Amer Ait Sidhoum
  • K. Hervé Dakpo
  • Laure Latruffe

    (BSE - Bordeaux Sciences Economiques - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

Abstract

This article studies trade-offs of farms in terms of economic sustainability (proxied here by technical efficiency), environmental sustainability (proxied here by farmers' commitment towards the environment) and social sustainability (proxied here by farmers' contribution to on farm well-being and communities' well-being). We use the latent class stochastic frontier model and create classes based on three separating variables, representing farms' environmental sustainability and social sustainability. The application to a sample of Spanish crop farms shows that more environmentally sustainable farms are likely to have lower levels of technical efficiency. However, improvements in social concerns, both towards own farm and the larger community, may lead to improved technical efficiency levels. In general, our study provides evidence of trade-offs for farms between economic sustainability and environmental sustainability, but also between environmental sustainability and social sustainability.

Suggested Citation

  • Amer Ait Sidhoum & K. Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," Post-Print hal-03675565, HAL.
  • Handle: RePEc:hal:journl:hal-03675565
    DOI: 10.1371/journal.pone.0261190
    Note: View the original document on HAL open archive server: https://hal.science/hal-03675565
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03675565/document
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raymond J. G. M. Florax & Chiara M. Travisi & Peter Nijkamp, 2005. "A meta-analysis of the willingness to pay for reductions in pesticide risk exposure," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 32(4), pages 441-467, December.
    2. Bravo-Ureta, Boris E. & Evenson, Robert E., 1994. "Efficiency in agricultural production: The case of peasant farmers in eastern Paraguay," Agricultural Economics, Blackwell, vol. 10(1), pages 27-37, January.
    3. Boris E. Bravo‐Ureta & Robert E. Evenson, 1994. "Efficiency in agricultural production: the case of peasant farmers in eastern Paraguay," Agricultural Economics, International Association of Agricultural Economists, vol. 10(1), pages 27-37, January.
    4. Robert G. Chambers & Teresa Serra, 2018. "The social dimension of firm performance: a data envelopment approach," Empirical Economics, Springer, vol. 54(1), pages 189-206, February.
    5. Hung-Hao Chang & Steven T. Yen, 2010. "Off-farm employment and food expenditures at home and away from home," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(4), pages 523-551, December.
    6. Johannes Sauer & Catherine Moreddu, 2020. "Drivers of farm performance: Empirical country case studies," OECD Food, Agriculture and Fisheries Papers 143, OECD Publishing.
    7. Laura O. Taylor & Ronald G. Cummings, 1999. "Unbiased Value Estimates for Environmental Goods: A Cheap Talk Design for the Contingent Valuation Method," American Economic Review, American Economic Association, vol. 89(3), pages 649-665, June.
    8. D. Berre & S. Blancard & J.Ph. Boussemart & H. Leleu & E. Tillard, 2014. "Finding the right compromise between productivity and environmental efficiency on high input tropical dairy farms: A case study," Post-Print halshs-01132656, HAL.
    9. Teresa Serra & Barry Goodwin, 2009. "The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach," Journal of Productivity Analysis, Springer, vol. 31(2), pages 113-124, April.
    10. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    11. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
    12. Amer Ait Sidhoum & Teresa Serra & Laure Latruffe, 2020. "Measuring sustainability efficiency at farm level: a data envelopment analysis approach [Economic and environmental efficiency of district heating plants]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(1), pages 200-225.
    13. Erik Mathijs & Johan F. M. Swinnen, 2001. "Production Organization And Efficiency During Transition: An Empirical Analysis Of East German Agriculture," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 100-107, February.
    14. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923.
    15. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    16. Kalirajan, K P & Obwona, M B, 1994. "Frontier Production Function: The Stochastic Coefficients Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 87-96, February.
    17. Helena Hansson & Gordana Manevska-Tasevska & Mette Asmild, 2020. "Rationalising inefficiency in agricultural production – the case of Swedish dairy agriculture [Formulation and estimation of stochastic frontier production function models]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(1), pages 1-24.
    18. Laure Latruffe & Kelvin Balcombe & Sophia Davidova & Katarzyna Zawalinska, 2004. "Determinants of technical efficiency of crop and livestock farms in Poland," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1255-1263.
    19. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    20. Phelan, Anna (Anya) & Dawes, Les & Costanza, Robert & Kubiszewski, Ida, 2017. "Evaluation of social externalities in regional communities affected by coal seam gas projects: A case study from Southeast Queensland," Ecological Economics, Elsevier, vol. 131(C), pages 300-311.
    21. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    22. Peter Bogetoft & Jens Hougaard, 2003. "Rational Inefficiencies," Journal of Productivity Analysis, Springer, vol. 20(3), pages 243-271, November.
    23. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    24. Duke, Joshua M. & Borchers, Allison M. & Johnston, Robert J. & Absetz, Sarah, 2012. "Sustainable agricultural management contracts: Using choice experiments to estimate the benefits of land preservation and conservation practices," Ecological Economics, Elsevier, vol. 74(C), pages 95-103.
    25. Jayson L. Lusk, 2003. "Effects of Cheap Talk on Consumer Willingness-to-Pay for Golden Rice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 840-856.
    26. Nicola Dempsey & Glen Bramley & Sinéad Power & Caroline Brown, 2011. "The social dimension of sustainable development: Defining urban social sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 19(5), pages 289-300, September.
    27. Thomas P. Seager, 2008. "The sustainability spectrum and the sciences of sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 17(7), pages 444-453, November.
    28. Garmendia, Eneko & Stagl, Sigrid, 2010. "Public participation for sustainability and social learning: Concepts and lessons from three case studies in Europe," Ecological Economics, Elsevier, vol. 69(8), pages 1712-1722, June.
    29. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    30. Frédéric Zahm & Philippe Viaux & Lionel Vilain & Philippe Girardin & Christian Mouchet, 2008. "Assessing farm sustainability with the IDEA method - from the concept of agriculture sustainability to case studies on farms," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(4), pages 271-281.
    31. Rosa-Schleich, Julia & Loos, Jacqueline & Mußhoff, Oliver & Tscharntke, Teja, 2019. "Ecological-economic trade-offs of Diversified Farming Systems – A review," Ecological Economics, Elsevier, vol. 160(C), pages 251-263.
    32. Kalirajan, K P, 1990. "On Measuring Economic Efficiency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 75-85, January-M.
    33. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    34. Guan Zhengfei & Alfons Oude Lansink, 2006. "The Source of Productivity Growth in Dutch Agriculture: A Perspective from Finance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 644-656.
    35. Maria Martinez Cillero & Fiona Thorne & Michael Wallace & James Breen, 2019. "Technology heterogeneity and policy change in farm-level efficiency analysis: an application to the Irish beef sector," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(2), pages 193-214.
    36. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    37. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    38. Villalba, D. & Díez-Unquera, B. & Carrascal, A. & Bernués, A. & Ruiz, R., 2019. "Multi-objective simulation and optimisation of dairy sheep farms: Exploring trade-offs between economic and environmental outcomes," Agricultural Systems, Elsevier, vol. 173(C), pages 107-118.
    39. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    40. Ssebunya, Brian Robert & Schader, Christian & Baumgart, Lukas & Landert, Jan & Altenbuchner, Christine & Schmid, Erwin & Stolze, Matthias, 2019. "Sustainability Performance of Certified and Non-certified Smallholder Coffee Farms in Uganda," Ecological Economics, Elsevier, vol. 156(C), pages 35-47.
    41. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    42. Upton, Martin & Haworth, Simon, 1987. "The Growth of Farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 14(4), pages 351-366.
    43. Carlos D. Mayen & Joseph V. Balagtas & Corinne E. Alexander, 2010. "Technology Adoption and Technical Efficiency: Organic and Conventional Dairy Farms in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 181-195.
    44. Govindan, Kannan & Shankar, Madan & Kannan, Devika, 2018. "Supplier selection based on corporate social responsibility practices," International Journal of Production Economics, Elsevier, vol. 200(C), pages 353-379.
    45. Ho-chuan Huang, 2004. "Estimation of Technical Inefficiencies with Heterogeneous Technologies," Journal of Productivity Analysis, Springer, vol. 21(3), pages 277-296, May.
    46. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    47. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    48. Johannes Sauer & Catherine J. Morrison Paul, 2013. "The empirical identification of heterogeneous technologies and technical change," Applied Economics, Taylor & Francis Journals, vol. 45(11), pages 1461-1479, April.
    49. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    50. van Calker, K.J. & Berentsen, P.B.M. & de Boer, I.J.M. & Giesen, G.W.J. & Huirne, R.B.M., 2007. "Modelling worker physical health and societal sustainability at farm level: An application to conventional and organic dairy farming," Agricultural Systems, Elsevier, vol. 94(2), pages 205-219, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Sun & Shu-Nung Yao, 2022. "Sustainability Trade-Offs in Media Coverage of Poverty Alleviation: A Content-Based Spatiotemporal Analysis in China’s Provinces," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    2. Christian Bux & Mariarosaria Lombardi & Erica Varese & Vera Amicarelli, 2022. "Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    3. Fadi Sayegh, 2023. "Engineers' climate change awareness and sustainable asset management practices," SN Business & Economics, Springer, vol. 3(5), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    2. repec:use:tkiwps:3232 is not listed on IDEAS
    3. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    4. Barros, Carlos Pestana, 2011. "Cost efficiency of African airports using a finite mixture model," Transport Policy, Elsevier, vol. 18(6), pages 807-813, November.
    5. Peter Dawson & Stephen Dobson & Bill Gerrard, 2000. "Stochastic Frontiers and the Temporal Structure of Managerial Efficiency in English Soccer," Journal of Sports Economics, , vol. 1(4), pages 341-362, November.
    6. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    7. Jerzy Marzec & Andrzej Pisulewski, 2020. "Pomiar efektywności zróżnicowanych technologicznie gospodarstw rolnych w Unii Europejskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 111-137.
    8. Martín Rossi, 2015. "The Econometrics Approach to the Measurement of Efficiency: A Survey," Working Papers 117, Universidad de San Andres, Departamento de Economia, revised Feb 2015.
    9. Abiodun Adegboye & Olawale Daniel Akinyele, 2022. "Assessing the determinants of government spending efficiency in Africa," Future Business Journal, Springer, vol. 8(1), pages 1-17, December.
    10. Abdul Wadud, 2013. "Impact of Microcredit on Agricultural Farm Performance and Food Security in Bangladesh," Working Papers 14, Institute of Microfinance (InM).
    11. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    12. Ioannis Skevas, 2019. "A Hierarchical Stochastic Frontier Model for Efficiency Measurement Under Technology Heterogeneity," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 513-524, September.
    13. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    14. Vangelis Tzouvelekas & Konstantinos Giannakas & Peter Midmore & Konstantinos Mattas, 1997. "Technical efficiency measures for olive-growing farms in Crete, Greece," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 3(2), pages 154-169, May.
    15. Manlagnit, Maria Chelo V., 2015. "Basel regulations and banks’ efficiency: The case of the Philippines," Journal of Asian Economics, Elsevier, vol. 39(C), pages 72-85.
    16. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    17. Bos, J.W.B. & Economidou, C. & Koetter, M. & Kolari, J.W., 2010. "Do all countries grow alike?," Journal of Development Economics, Elsevier, vol. 91(1), pages 113-127, January.
    18. Per J. Agrell & Mehdi Farsi & Massimo Filippini & Martin Koller, 2013. "Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems," Working Papers 0038, Swiss Economics.
    19. Carlos Pestana Barros & Julio del Corral & Pedro Garcia-del-Barrio, 2008. "Identification of Segments of Soccer Clubs in the Spanish League First Division With a Latent Class Model," Journal of Sports Economics, , vol. 9(5), pages 451-469, October.
    20. Althaler, Karl S. & Slavova, Tatjana, 2000. "DEA Problems under Geometrical or Probability Uncertainties of Sample Data," Economics Series 89, Institute for Advanced Studies.
    21. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.

    More about this item

    Keywords

    Sustainable agriculture; Sustainability science; Agricultural economics; Farms; Crops; Agricultural workers; Pesticides; Agriculture;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03675565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.