IDEAS home Printed from https://ideas.repec.org/p/ags/feemer/162419.html
   My bibliography  Save this paper

The Effect of Within-Sector, Upstream and Downstream Energy Taxes on Innovation and Productivity

Author

Listed:
  • Franco, Chiara
  • Marin, Giovanni

Abstract

The aim of the paper is to investigate the effect of environmental stringency on innovation and productivity using a cross-country panel made up of 7 European countries for 13 manufacturing sectors over the years 2001-2007. This research topic goes under the heading of Porter Hypothesis (PH) of which different versions have been tested. We take into consideration both the strong and the weak versions while adding some peculiarities to the analysis. Firstly, we assess the role played by a specific environmental regulation, that is energy taxes, that have rarely been empirically tested as factors that can favour PH hypothesis to be verified. Secondly, we do not consider, within the same framework, only the effect of energy taxes in the same sector (within-sector), but also the role played by energy taxes in upstream and downstream sectors in terms of input-output relationship. Thirdly, we test these relationships also “indirectly” by verifying whether innovation can be one of the channels through which higher sectoral productivity can be reached. The main findings suggest that downstream stringency is the most relevant driver for innovation and that most of the effect of regulation on productivity is direct, while the part of the effect mediated by induced innovation is not statistically significant.

Suggested Citation

  • Franco, Chiara & Marin, Giovanni, 2013. "The Effect of Within-Sector, Upstream and Downstream Energy Taxes on Innovation and Productivity," Energy: Resources and Markets 162419, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemer:162419
    DOI: 10.22004/ag.econ.162419
    as

    Download full text from publisher

    File URL: http://ageconsearch.umn.edu/record/162419/files/NDL2013-103.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
    2. Shadbegian, Ronald J. & Gray, Wayne B., 2005. "Pollution abatement expenditures and plant-level productivity: A production function approach," Ecological Economics, Elsevier, vol. 54(2-3), pages 196-208, August.
    3. Hamamoto, Mitsutsugu, 2006. "Environmental regulation and the productivity of Japanese manufacturing industries," Resource and Energy Economics, Elsevier, vol. 28(4), pages 299-312, November.
    4. Ebru Alpay & Joe Kerkvliet & Steven Buccola, 2002. "Productivity Growth and Environmental Regulation in Mexican and U.S. Food Manufacturing," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 887-901.
    5. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    6. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    7. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    8. Andrea M. Leiter & Arno Parolini & Hannes Winner, 2009. "Environmental Regulation and Investment: Evidence from European Industries," Working Papers 2009-04, Faculty of Economics and Statistics, University of Innsbruck.
    9. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    10. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    11. Greaker, Mads & Rosendahl, Knut Einar, 2008. "Environmental policy with upstream pollution abatement technology firms," Journal of Environmental Economics and Management, Elsevier, vol. 56(3), pages 246-259, November.
    12. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    13. Gray, Wayne B & Shadbegian, Ronald J, 1998. "Environmental Regulation, Investment Timing, and Technology Choice," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 235-256, June.
    14. Kneller, Richard & Manderson, Edward, 2012. "Environmental regulations and innovation activity in UK manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(2), pages 211-235.
    15. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    16. Leiter, Andrea M. & Parolini, Arno & Winner, Hannes, 2011. "Environmental regulation and investment: Evidence from European industry data," Ecological Economics, Elsevier, vol. 70(4), pages 759-770, February.
    17. Claudia Ghisetti & Francesco Quatraro, 2013. "Beyond the Inducement in Climate Change: Do Environmental Performances Spur Enrivornmental Technologies? A Regional Analysis of Cross-Sectoral Differences," Working Papers 2013112, University of Ferrara, Department of Economics.
    18. Gollop, Frank M & Roberts, Mark J, 1983. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
    19. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    20. repec:fth:harver:1473 is not listed on IDEAS
    21. Heyes, Anthony & Kapur, Sandeep, 2011. "Regulatory attitudes and environmental innovation in a model combining internal and external R&D," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 327-340, May.
    22. Ghisetti, Claudia & Quatraro, Francesco, 2013. "Beyond inducement in climate change: Does environmental performance spur environmental technologies? A regional analysis of cross-sectoral differences," Ecological Economics, Elsevier, vol. 96(C), pages 99-113.
    23. Greaker, Mads, 2006. "Spillovers in the development of new pollution abatement technology: A new look at the Porter-hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 411-420, July.
    24. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    25. Yuquing Xing & Charles Kolstad, 2002. "Do Lax Environmental Regulations Attract Foreign Investment?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 1-22, January.
    26. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Mazzanti & Giovanni Marin & Susanna Mancinelli & Francesco Nicolli, 2015. "Carbon dioxide reducing environmental innovations, sector upstream/downstream integration and policy: evidence from the EU," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(4), pages 709-735, November.
    2. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    3. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    4. Lorena D’Agostino, 2015. "How MNEs respond to environmental regulation: integrating the Porter hypothesis and the pollution haven hypothesis," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 32(2), pages 245-269, August.
    5. Marianna Gilli, 2016. "Towards a low carbon Europe: the role of technological change and environmental policies in European manufacturing sectors," SEEDS Working Papers 0516, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2016.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    JEL classification:

    • L6 - Industrial Organization - - Industry Studies: Manufacturing
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemer:162419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.