IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235754.html
   My bibliography  Save this paper

Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating

Author

Listed:
  • Park, Eunchun
  • Brorsen, B. Wade
  • Harri, Ardian

Abstract

Rating of insurance premiums depends on the probability of events in the tail of the distribution. Extreme value theory provides a promising way to assess tail risk. We assume that crop yield follows a Generalized Pareto Distribution (GPD), which is a family of extreme value distributions that has advantages for modeling rare events. GPD parameters are fitted using county-level historical winter wheat yield (1970-2014). Spatial smoothing with Kriging parameters is used within a Bayesian hierarchical framework that helps overcome a lack of data due to the rarity of extreme events. We assume that the spatial correlation of crop yield is embedded in the parameters of the GPD. To obtain the posterior distribution, we use Metropolis-Hastings (MH) steps within a Gibbs sampler. Maximum likelihood estimates of the GPD parameters are used for candidate density in the MH step. In the process, MCMC chains are run for 100,000 iterations and burn-in for the first 20,000 observations. We use Deviance Information Criterion (DIC) and out of sample performance to evaluate the quality of the model. From the estimated results, we verify spatial correlation in crop yield, which substantially affects estimates of posterior distributions of GPD parameters. We further simulate spatial random effect based on posterior values of Kriging parameters (range and sill) to visualize and verify the form of spatial correlation. Estimated premiums from an existing method from which current premiums are based, tend to underestimate premium rates compared to our new proposed method.

Suggested Citation

  • Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235754
    DOI: 10.22004/ag.econ.235754
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235754/files/Final_eunchunpark.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jerry R. Skees & J. Roy Black & Barry J. Barnett, 1997. "Designing and Rating an Area Yield Crop Insurance Contract," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 430-438.
    2. Keith H. Coble & Thomas O. Knight & Rulon D. Pope & Jeffery R. Williams, 1996. "Modeling Farm-Level Crop Insurance Demand with Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 439-447.
    3. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    4. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    5. Alan P. Ker & Tor N. Tolhurst & Yong Liu, 2016. "Bayesian Estimation of Possibly Similar Yield Densities: Implications for Rating Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(2), pages 360-382.
    6. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    7. Octavio A. Ramírez, 1997. "Estimation and Use of a Multivariate Parametric Model for Simulating Heteroskedastic, Correlated, Nonnormal Random Variables: The Case of Corn Belt Corn, Soybean, and Wheat Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 191-205.
    8. Charles B. Moss & J. S. Shonkwiler, 1993. "Estimating Yield Distributions with a Stochastic Trend and Nonnormal Errors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 1056-1062.
    9. Ardian Harri & Keith H. Coble & Alan P. Ker & Barry J. Goodwin, 2011. "Relaxing Heteroscedasticity Assumptions in Area-Yield Crop Insurance Rating," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 703-713.
    10. Bailey Norwood & Matthew C. Roberts & Jayson L. Lusk, 2004. "Ranking Crop Yield Models Using Out-of-Sample Likelihood Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1032-1043.
    11. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    12. Vitor Ozaki & Barry Goodwin & Ricardo Shirota, 2008. "Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1151-1164.
    13. Mario J. Miranda, 1991. "Area-Yield Crop Insurance Reconsidered," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 233-242.
    14. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    15. Mario J. Miranda & Joseph W. Glauber, 1997. "Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Eunchun & Brorsen, Wade & Harri, Ardian, 2017. "Spatially Smoothed Crop Yield Density Estimation: Physical Distance vs Climate Similarity," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259145, Agricultural and Applied Economics Association.
    2. Niyibizi, Bart & Brorsen, B. Wade, 2017. "Robustness of the Impact of Climate on U.S. Corn Yields," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259194, Agricultural and Applied Economics Association.
    3. Niyibizi, Bart & Brorsen, Wade & Park, Eunchun, 2018. "Using Bayesian Kriging for Spatial Smoothing of Trends in the Means and Variances of Crop Yield Densities," 2018 Annual Meeting, August 5-7, Washington, D.C. 274403, Agricultural and Applied Economics Association.
    4. Brorsen, B. Wade, 2017. "2016 WAEA Presidential Address: Comments on Agricultural Economics Research," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-9, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Eunchun & Brorsen, Wade & Harri, Ardian, 2017. "Spatially Smoothed Crop Yield Density Estimation: Physical Distance vs Climate Similarity," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259145, Agricultural and Applied Economics Association.
    2. Niyibizi, Bart & Brorsen, Wade & Park, Eunchun, 2018. "Using Bayesian Kriging for Spatial Smoothing of Trends in the Means and Variances of Crop Yield Densities," 2018 Annual Meeting, August 5-7, Washington, D.C. 274403, Agricultural and Applied Economics Association.
    3. Ramirez, Octavio A. & Shonkwiler, J. Scott, 2017. "A Probabilistic Model of Crop Insurance Purchase Decision," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-17, January.
    4. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    5. Shen, Zhiwei, 2016. "Adaptive local parametric estimation of crop yields: implication for crop insurance ratemaking," 156th Seminar, October 4, 2016, Wageningen, The Netherlands 249984, European Association of Agricultural Economists.
    6. Ramirez, Octavio & Shonkwiler, J. Scott, 2016. "Some Comparative Statics for Evaluating the Performance of the US Crop Insurance Program," SCC-76 Meeting, 2016, March 17-19, Pensacola, Florida 233761, SCC-76: Economics and Management of Risk in Agriculture and Natural Resources.
    7. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    8. Ker, Alan. P & Tolhurst, Tor & Liu, Yong, 2015. "Rating Area-yield Crop Insurance Contracts Using Bayesian Model Averaging and Mixture Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205211, Agricultural and Applied Economics Association.
    9. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    10. Lu, Yue & Ramirez, Octavio A. & Rejesus, Roderick M. & Knight, Thomas O. & Sherrick, Bruce J., 2008. "Empirically Evaluating the Flexibility of the Johnson Family of Distributions: A Crop Insurance Application," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 37(1), pages 1-13, April.
    11. Coble, Keith H. & Barnett, Barry J., 1999. "The Role Of Research In Producer Risk Management," Professional Papers 15803, Mississippi State University, Department of Agricultural Economics.
    12. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    13. Zheng, Qiujie & Wang, H. Holly & Shi, Qinghua, 2008. "Estimating Farm Level Multivariate Yield Distribution Using Nonparametric Methods," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6509, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Xiaotao Li & Jinzheng Ren & Beibei Niu & Haiping Wu, 2020. "Grain Area Yield Index Insurance Ratemaking Based on Time–Space Risk Adjustment in China," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    15. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    16. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    17. Kapiamba, Luabeya F., 2005. "Modeling Heteroskedasticity of Crop Yield Distributions: Implications for Normality," 2005 Annual meeting, July 24-27, Providence, RI 19475, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    19. Ramirez, Octavio A. & McDonald, Tanya U., 2006. "The Expanded Johnson System: A Highly Flexible Crop Yield Distribution Model," 2006 Annual meeting, July 23-26, Long Beach, CA 21455, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Qiujie Zheng & H. Holly Wang & Qing Hua Shi, 2014. "Estimating bivariate yield distributions and crop insurance premiums using nonparametric methods," Applied Economics, Taylor & Francis Journals, vol. 46(18), pages 2108-2118, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.