IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205651.html
   My bibliography  Save this paper

Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis

Author

Listed:
  • Narayanan, Badri G.
  • Taheripour, Farzad
  • Hertel, Thomas W.
  • Sahin, Sebnem
  • Escurra, Jorge J.

Abstract

The economy of South Asia faces serious challenges in water availability, which are expected to aggravate over the coming decades. In this context, we assess the long-run economy-wide impact of potential water scarcity in South Asia within a global context. This paper uses a dynamic Computable General Equilibrium (CGE) model, in tandem with an advanced comparative static CGE model, to examine the differences in economic growth possibilities in South Asia with and without water scarcity. Alternative assumptions on substitution between water and other inputs are considered. Our analysis shows that water scarcity is likely to affect economic growth of entire South Asian region adversely, more so in the future years. The potential losses for not pursuing productivity improvements in water use are huge, ranging from 7% to 45% of the potential GDP in 2030. Further looking at the sectoral impacts, we also find that water scarcity generates larger price impacts, particularly in the food sectors, in the medium term.

Suggested Citation

  • Narayanan, Badri G. & Taheripour, Farzad & Hertel, Thomas W. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205651, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205651
    DOI: 10.22004/ag.econ.205651
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205651/files/AAEA_2015_India_Dynamic.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chappuis, Thomas & Terrie Walmsley, 2011. "Projections for World CGE Model Baselines," GTAP Research Memoranda 3728, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    2. Mark W. Rosegrant & Claudia Ringler & Tingju Zhu & Simla Tokgoz & Prapti Bhandary, 2013. "Water and food in the bioeconomy: challenges and opportunities for development," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 139-150, November.
    3. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    4. Taheripour, Farzad & Hertel, Thomas W. & Gopalakrishnan, Badri N. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Agricultural production, irrigation, climate change, and water scarcity in India," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205591, Agricultural and Applied Economics Association.
    5. Taheripour, Farzad & Thomas Hertel & Jing Liu, 2013. "Introducing water by river basin into the GTAP-BIO model: GTAP-BIO-W," GTAP Working Papers 4304, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    7. Ianchovichina,Elena & Walmsley,Terrie L. (ed.), 2012. "Dynamic Modeling and Applications for Global Economic Analysis," Cambridge Books, Cambridge University Press, number 9781107002432.
    8. World Bank, 2015. "World Development Indicators 2015," World Bank Publications - Books, The World Bank Group, number 21634, December.
    9. McDougall, Robert & Alla Golub, 2007. "GTAP-E: A Revised Energy-Environmental Version of the GTAP Model," GTAP Research Memoranda 2959, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    10. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. Ianchovichina,Elena & Walmsley,Terrie L. (ed.), 2012. "Dynamic Modeling and Applications for Global Economic Analysis," Cambridge Books, Cambridge University Press, number 9781107011694.
    12. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taheripour, Farzad & Hertel, Thomas W. & Gopalakrishnan, Badri N. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Agricultural production, irrigation, climate change, and water scarcity in India," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205591, Agricultural and Applied Economics Association.
    2. Markandya, A. & Antimiani, A. & Costantini, V. & Martini, C. & Palma, A. & Tommasino, M.C., 2015. "Analyzing Trade-offs in International Climate Policy Options: The Case of the Green Climate Fund," World Development, Elsevier, vol. 74(C), pages 93-107.
    3. Alessandro Antimiani & Valeria Costantini & Anil Markandya & Chiara Martini & Alessandro Palma, 2014. "A dynamic CGE modelling approach for analyzing trade-offs in climate change policy options: the case of Green Climate Fund," Working Papers 2014-05, BC3.
    4. Muhammad Zeshan & Jong-Hwan Ko, 2019. "An Analysis of Adaption Policies to Climate Change: Gdyn-W Model," PIDE-Working Papers 2019:159, Pakistan Institute of Development Economics.
    5. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Fang Yang & Chuanxin Zou & Chutong Li, 2023. "The Impact of Carbon Tariffs on China’s Agricultural Trade," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    7. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    8. Alla A. Golub & Thomas W. Hertel, 2012. "Modeling Land-Use Change Impacts Of Biofuels In The Gtap-Bio Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-30.
    9. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    11. Wolfgang Britz & Roberto Roson, 2018. "Exploring Long Run Structural Change with a Dynamic General Equilibrium Model," Working Papers 2018: 12, Department of Economics, University of Venice "Ca' Foscari".
    12. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    13. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    14. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    15. Thaeripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E. & Beckman, Jayson F. & Birur, Dileep K., 2008. "Biofuels and their By-Products: Global Economic and Environmental Implications," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6452, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Zhongyu Ma & Songfeng Cai & Weifeng Ye & Alun Gu, 2019. "Linking Emissions Trading Schemes: Economic Valuation of a Joint China–Japan–Korea Carbon Market," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    17. Jiaze Sun & Huijuan Lee & Jun Yang, 2021. "The Impact of the COVID-19 Pandemic on the Global Value Chain of the Manufacturing Industry," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    18. Dixon, Peter B. & Rimmer, Maureen T., 2009. "Simulating the U.S. recession," Conference papers 331862, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    20. Wolfgang Britz & Yaghoob Jafari & Alexandr Nekhay & Roberto Roson, 2020. "Modeling Trade and Income Distribution in Six Developing Countries A dynamic general equilibrium analysis up to the year 2050," Working Papers 2020:03, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy; International Relations/Trade; Land Economics/Use; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.