IDEAS home Printed from https://ideas.repec.org/p/aah/create/2015-29.html
   My bibliography  Save this paper

Regularized Estimation of Structural Instability in Factor Models: The US Macroeconomy and the Great Moderation

Author

Listed:
  • Laurent Callot

    () (University of Amsterdam and CREATES)

  • Johannes Tang Kristensen

    () (University of Southern Denmark and CREATES)

Abstract

This paper shows that the parsimoniously time-varying methodology of Callot and Kristensen (2015) can be applied to factormodels.We apply this method to study macroeconomic instability in the US from 1959:1 to 2006:4 with a particular focus on the Great Moderation. Models with parsimoniously time-varying parameters are models with an unknown number of break points at unknown locations. The parameters are assumed to follow a random walk with a positive probability that an increment is exactly equal to zero so that the parameters do not vary at every point in time. The vector of increments, which is high dimensional by construction and sparse by assumption, is estimated using the Lasso. We apply this method to the estimation of static factor models and factor augmented autoregressions using a set of 190 quarterly observations of 144 US macroeconomic series from Stock andWatson (2009).We find that the parameters of both models exhibit a higher degree of instability in the period from 1970:1 to 1984:4 relative to the following 15 years. In our setting the Great Moderation appears as the gradual ending of a period of high structural instability that took place in the 1970s and early 1980s.

Suggested Citation

  • Laurent Callot & Johannes Tang Kristensen, 2015. "Regularized Estimation of Structural Instability in Factor Models: The US Macroeconomy and the Great Moderation," CREATES Research Papers 2015-29, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2015-29
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/15/rp15_29.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with parsimoniously Time Varying Parameters and an Application to Monetary Policy," Tinbergen Institute Discussion Papers 14-145/III, Tinbergen Institute, revised 09 Apr 2015.
    4. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.
    5. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    6. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," Review of Economic Studies, Oxford University Press, vol. 83(4), pages 1511-1543.
    7. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    8. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    9. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    10. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    11. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    12. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    13. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    14. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    15. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Parsimoniously time-varying parameters; factor models; structural break; Lasso;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2015-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.