IDEAS home Printed from https://ideas.repec.org/e/pny19.html
   My authors  Follow this author

Batsaikhan Nyamdash

Personal Details

First Name:Batsaikhan
Middle Name:
Last Name:Nyamdash
Suffix:
RePEc Short-ID:pny19
[This author has chosen not to make the email address public]

Affiliation

(97%) Department of Business and Economics
Tsahim Urtuu College

Unlaanbaatar, Mongolia
http://tsahimurtuu.edu.mn/index1.php?tid=49&rid=48
RePEc:edi:dbtucmn (more details at EDIRC)

(3%) Department of Economics
Trinity College Dublin

Dublin, Ireland
http://www.tcd.ie/Economics/
RePEc:edi:detcdie (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Nyamdash, Batsaikhan & Denny, Eleanor, 2011. "The impact of electricity storage on wholesale electricity prices," MPRA Paper 34941, University Library of Munich, Germany.
  2. Nyamdash, Batsaikhan & Denny, Eleanor, 2011. "The economic impact of electricity conservation policies: A case study of Ireland," MPRA Paper 28384, University Library of Munich, Germany.

Articles

  1. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
  2. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Nyamdash, Batsaikhan & Denny, Eleanor, 2011. "The impact of electricity storage on wholesale electricity prices," MPRA Paper 34941, University Library of Munich, Germany.

    Cited by:

    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    3. Sánchez de la Nieta, A.A. & Contreras, J., 2020. "Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case," Energy Economics, Elsevier, vol. 90(C).
    4. Kraan, Oscar & Kramer, Gert Jan & Nikolic, Igor & Chappin, Emile & Koning, Vinzenz, 2019. "Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing," Energy Policy, Elsevier, vol. 131(C), pages 99-110.
    5. Jacques Després, 2015. "Development of a dispatch model of the European power system for coupling with a long-term foresight energy model," Working Papers hal-01245554, HAL.
    6. Zorana Božić & Dušan Dobromirov & Jovana Arsić & Mladen Radišić & Beata Ślusarczyk, 2020. "Power Exchange Prices: Comparison of Volatility in European Markets," Energies, MDPI, vol. 13(21), pages 1-15, October.
    7. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools," Post-Print hal-01279461, HAL.
    8. Tom Brijs & Frederik Geth & Sauleh Siddiqui & Benjamin F. Hobbs & Ronnie Belmans, 2016. "Price-Based Unit Commitment Electricity Storage Arbitrage with Piecewise Linear Price-Effects," Discussion Papers of DIW Berlin 1567, DIW Berlin, German Institute for Economic Research.
    9. Irena Macherinskiene & Inna Kremer Matyskevich, 2017. "Assessment of Lithuanian Energy Sector Influence on GDP," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 13(4), pages 43-59.
    10. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    11. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    12. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    13. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    14. Komorowska, Aleksandra & Benalcazar, Pablo & Kaszyński, Przemysław & Kamiński, Jacek, 2020. "Economic consequences of a capacity market implementation: The case of Poland," Energy Policy, Elsevier, vol. 144(C).
    15. Soini, Martin Christoph & Parra, David & Patel, Martin Kumar, 2020. "Does bulk electricity storage assist wind and solar in replacing dispatchable power production?," Energy Economics, Elsevier, vol. 85(C).

  2. Nyamdash, Batsaikhan & Denny, Eleanor, 2011. "The economic impact of electricity conservation policies: A case study of Ireland," MPRA Paper 28384, University Library of Munich, Germany.

    Cited by:

    1. Mehmood Mirza, Faisal & Bergland, Olvar & Afzal, Naila, 2014. "Electricity conservation policies and sectorial output in Pakistan: An empirical analysis," Energy Policy, Elsevier, vol. 73(C), pages 757-766.

Articles

  1. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    See citations under working paper version above.
  2. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.

    Cited by:

    1. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    2. Tunç Durmaz, 2016. "Precautionary Storage in Electricity Markets," Working Papers 2016.07, FAERE - French Association of Environmental and Resource Economists.
    3. Kraan, Oscar & Kramer, Gert Jan & Nikolic, Igor & Chappin, Emile & Koning, Vinzenz, 2019. "Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing," Energy Policy, Elsevier, vol. 131(C), pages 99-110.
    4. Pedro Crespo Del Granado & Stein Wallace & Zhan Pang, 2016. "The impact of wind uncertainty on the strategic valuation of distributed electricity storage," Computational Management Science, Springer, vol. 13(1), pages 5-27, January.
    5. Xinhua Zheng & Zaichun Liu & Jifei Sun & Ruihao Luo & Kui Xu & Mingyu Si & Ju Kang & Yuan Yuan & Shuang Liu & Touqeer Ahmad & Taoli Jiang & Na Chen & Mingming Wang & Yan Xu & Mingyan Chuai & Zhengxin , 2023. "Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
    7. Dunguo Mou, 2019. "Pumped storage hydro power’s function in the electricity market under the electricity deregulation background in China – A case study of Fujian province," Energy & Environment, , vol. 30(6), pages 951-968, September.
    8. Dawid Chudy & Adam Leśniak, 2021. "Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing," Energies, MDPI, vol. 14(11), pages 1-17, May.
    9. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    10. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    11. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    12. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    13. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    14. Denny, Eleanor, 2009. "The economics of tidal energy," Energy Policy, Elsevier, vol. 37(5), pages 1914-1924, May.
    15. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    16. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    17. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    18. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    19. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    20. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    21. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2013. "Economic feasibility of large community feed-in tariff-eligible wind energy production in Nova Scotia," Energy Policy, Elsevier, vol. 62(C), pages 966-977.
    22. Ciara O'Dwyer & L. (Lisa B.) Ryan & Damian Flynn, 2017. "Efficient large-scale energy storage dispatch: challenges in future high renewables systems," Open Access publications 10197/9103, School of Economics, University College Dublin.
    23. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
    24. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    25. Bjarne Steffen & Christoph Weber, 2011. "Efficient storage capacity in power systems with thermal and renewable generation," EWL Working Papers 1104, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Aug 2011.
    26. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    27. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    28. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    29. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    30. Newbery, David, 2021. "National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage," Energy Policy, Elsevier, vol. 158(C).
    31. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    32. Lisa Göransson, 2023. "Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe," Energies, MDPI, vol. 16(8), pages 1-27, April.
    33. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    34. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    35. Melikoglu, Mehmet, 2017. "Pumped hydroelectric energy storage: Analysing global development and assessing potential applications in Turkey based on Vision 2023 hydroelectricity wind and solar energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 146-153.
    36. Linn, Joshua & Shih, Jhih-Shyang, 2019. "Do lower electricity storage costs reduce greenhouse gas emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 130-158.
    37. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    38. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    39. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    40. Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    41. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
    42. Mou, Dunguo & He, Xiaoping, 2019. "Developing large-scale energy storage to alleviate a low-carbon energy bubble," Energy Policy, Elsevier, vol. 132(C), pages 62-74.
    43. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.
    44. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (2) 2011-02-05 2011-12-13

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Batsaikhan Nyamdash should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.