IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5474-d874284.html
   My bibliography  Save this article

Novel Gas Turbine Challenges to Support the Clean Energy Transition

Author

Listed:
  • Hiyam Farhat

    (Department of Industrial, Electronic and Mechanical Engineering, ROMA TRE University, via della Vasca Navale 79, 00146 Rome, Italy)

  • Coriolano Salvini

    (Department of Industrial, Electronic and Mechanical Engineering, ROMA TRE University, via della Vasca Navale 79, 00146 Rome, Italy)

Abstract

The ongoing energy transformation, which is fueled by environmentally cautious policies, demands a full synergy with existing back-up gas turbines (GTs). Renewable energy sources (RESs), such as wind and solar, are intermittent by nature and present large variations across the span of the day, seasons, and geographies. The gas turbine is seen as an essential part of the energy transition because of its superior operational flexibility over other non-renewable counterparts, such as hydro and nuclear. Besides the technical aspects, the latter are less popular due to controversies associated with safety, ecological, and social aspects. GTs can produce when required and with acceptable reaction times and load ranges. This allows a balance between the energy supply and demand in the grid, mitigating the variations in RESs. The increased cycling due to operational flexibility has adverse effects on GT components and the unit efficiency. The latter dictates how well GTs make use of the burned fuel and influence the emissions per energy unit. This paper investigates these aspects. First, it presents the effects of increased penetration of renewable energy sources (RESs) into the grid. Second, it defines the new operation requirements including more dynamic load regimes, the provision for high occurrences of starts and stops, continuous and variant load cycling operations, extended partial loading or stand-by, and other conditions not foreseen under the classic baseload or cyclic operations. Finally, it proposes the overhauling of the present GT inspection and lifing criteria to meet the new role of GTs.

Suggested Citation

  • Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5474-:d:874284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    3. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    4. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    5. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    6. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    7. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    8. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    9. Kazempour, S. Jalal & Moghaddam, M. Parsa & Haghifam, M.R. & Yousefi, G.R., 2009. "Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies," Renewable Energy, Elsevier, vol. 34(12), pages 2630-2639.
    10. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    11. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    12. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    13. González, A. & McKeogh, E. & Gallachóir, B.Ó., 2004. "The role of hydrogen in high wind energy penetration electricity systems: The Irish case," Renewable Energy, Elsevier, vol. 29(4), pages 471-489.
    14. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    15. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    16. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    17. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    18. Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
    19. Łukowicz, Henryk & Rusin, Andrzej, 2018. "The impact of the control method of cyclic operation on the power unit efficiency and life," Energy, Elsevier, vol. 150(C), pages 565-574.
    20. Dounis, Anastasios I. & Kofinas, Panagiotis & Alafodimos, Constantine & Tseles, Dimitrios, 2013. "Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system," Renewable Energy, Elsevier, vol. 60(C), pages 202-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Bąk & Katarzyna Cheba, 2022. "Green Transformation: Applying Statistical Data Analysis to a Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    2. Michel Molière, 2023. "The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook," Energies, MDPI, vol. 16(9), pages 1-29, May.
    3. Konstantin Zadiran & Maxim Shcherbakov, 2023. "New Method of Degradation Process Identification for Reliability-Centered Maintenance of Energy Equipment," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    6. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    7. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    8. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    9. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    10. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    11. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    12. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    13. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    14. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    15. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    16. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    17. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    18. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    19. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5474-:d:874284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.