IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6121-d643388.html
   My bibliography  Save this article

Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review

Author

Listed:
  • Efstathios E. Michaelides

    (Department of Engineering, Texas Christian University, Fort Worth, TX 76129, USA)

Abstract

The path to the mitigation of global climate change and global carbon dioxide emissions avoidance leads to the large-scale substitution of fossil fuels for the generation of electricity with renewable energy sources. The transition to renewables necessitates the development of large-scale energy storage systems that will satisfy the hourly demand of the consumers. This paper offers an overview of the energy storage systems that are available to assist with the transition to renewable energy. The systems are classified as mechanical (PHS, CAES, flywheels, springs), electromagnetic (capacitors, electric and magnetic fields), electrochemical (batteries, including flow batteries), hydrogen and thermal energy storage systems. Emphasis is placed on the magnitude of energy storage each system is able to achieve, the thermodynamic characteristics, the particular applications the systems are suitable for, the pertinent figures of merit and the energy dissipation during the charging and discharging of the systems.

Suggested Citation

  • Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6121-:d:643388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    2. Leonard, Matthew D. & Michaelides, Efstathios E., 2018. "Grid-independent residential buildings with renewable energy sources," Energy, Elsevier, vol. 148(C), pages 448-460.
    3. Yang Gu & James McCalley & Ming Ni & Rui Bo, 2013. "Economic Modeling of Compressed Air Energy Storage," Energies, MDPI, vol. 6(4), pages 1-21, April.
    4. Lundh, M. & Dalenbäck, J.-O., 2008. "Swedish solar heated residential area with seasonal storage in rock: Initial evaluation," Renewable Energy, Elsevier, vol. 33(4), pages 703-711.
    5. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    6. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    7. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    8. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    9. Gil, Antoni & Oró, Eduard & Peiró, Gerard & Álvarez, Servando & Cabeza, Luisa F., 2013. "Material selection and testing for thermal energy storage in solar cooling," Renewable Energy, Elsevier, vol. 57(C), pages 366-371.
    10. Elliot Snider & Nathan Dasenbrock-Gammon & Raymond McBride & Mathew Debessai & Hiranya Vindana & Kevin Vencatasamy & Keith V. Lawler & Ashkan Salamat & Ranga P. Dias, 2020. "RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, Nature, vol. 586(7829), pages 373-377, October.
    11. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    12. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    13. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    14. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    15. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    16. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    17. Hartikainen, Teemu & Mikkonen, Risto & Lehtonen, Jorma, 2007. "Environmental advantages of superconducting devices in distributed electricity-generation," Applied Energy, Elsevier, vol. 84(1), pages 29-38, January.
    18. Michaelides, Efstathios E., 2021. "Thermodynamic analysis and power requirements of CO2 capture, transportation, and storage in the ocean," Energy, Elsevier, vol. 230(C).
    19. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    20. Prodromidis, George N. & Coutelieris, Frank A., 2012. "Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects," Renewable Energy, Elsevier, vol. 39(1), pages 149-153.
    21. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    22. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    23. Kestin, Joseph, 1980. "Availability: The concept and associated terminology," Energy, Elsevier, vol. 5(8), pages 679-692.
    24. Choi, Chanyong & Kim, Soohyun & Kim, Riyul & Choi, Yunsuk & Kim, Soowhan & Jung, Ho-young & Yang, Jung Hoon & Kim, Hee-Tak, 2017. "A review of vanadium electrolytes for vanadium redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 263-274.
    25. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    26. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    27. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    28. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    29. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    30. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    31. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    32. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    33. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    34. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    35. L. Scott Blankenship & Norah Balahmar & Robert Mokaya, 2017. "Oxygen-rich microporous carbons with exceptional hydrogen storage capacity," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    36. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
    37. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    38. Avril, S. & Arnaud, G. & Florentin, A. & Vinard, M., 2010. "Multi-objective optimization of batteries and hydrogen storage technologies for remote photovoltaic systems," Energy, Elsevier, vol. 35(12), pages 5300-5308.
    39. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    40. Michail Katsivelakis & Dimitrios Bargiotas & Aspassia Daskalopulu & Ioannis P. Panapakidis & Lefteri Tsoukalas, 2021. "Techno-Economic Analysis of a Stand-Alone Hybrid System: Application in Donoussa Island, Greece," Energies, MDPI, vol. 14(7), pages 1-31, March.
    41. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    42. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    43. Salgi, Georges & Lund, Henrik, 2008. "System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 85(4), pages 182-189, April.
    44. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    45. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    46. A. P. Drozdov & M. I. Eremets & I. A. Troyan & V. Ksenofontov & S. I. Shylin, 2015. "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system," Nature, Nature, vol. 525(7567), pages 73-76, September.
    47. Huang, Ke-Long & Li, Xiao-gang & Liu, Su-qin & Tan, Ning & Chen, Li-quan, 2008. "Research progress of vanadium redox flow battery for energy storage in China," Renewable Energy, Elsevier, vol. 33(2), pages 186-192.
    48. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    49. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    50. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    51. Denholm, Paul & King, Jeffrey C. & Kutcher, Charles F. & Wilson, Paul P.H., 2012. "Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage," Energy Policy, Elsevier, vol. 44(C), pages 301-311.
    52. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    53. In Hyuk Son & Jong Hwan Park & Seongyong Park & Kwangjin Park & Sangil Han & Jaeho Shin & Seok-Gwang Doo & Yunil Hwang & Hyuk Chang & Jang Wook Choi, 2017. "Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    54. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    55. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    56. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
    2. Nikolay E. Galushkin & Nataliya N. Yazvinskaya & Dmitriy N. Galushkin, 2022. "A Promising Energy Storage System Based on High-Capacity Metal Hydrides," Energies, MDPI, vol. 15(21), pages 1-12, October.
    3. Efstathios E. Michaelides, 2021. "Thermal Storage for District Cooling—Implications for Renewable Energy Transition," Energies, MDPI, vol. 14(21), pages 1-13, November.
    4. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    5. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    8. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    9. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    10. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    11. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    12. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    13. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    14. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    15. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    16. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    17. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    18. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    19. Vaiaso, T.V. Jr. & Jack, M.W., 2021. "Quantifying the trade-off between percentage of renewable supply and affordability in Pacific island countries: Case study of Samoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6121-:d:643388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.