IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p5207-5224.html
   My bibliography  Save this article

Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions

Author

Listed:
  • Cot-Gores, Jaume
  • Castell, Albert
  • Cabeza, Luisa F.

Abstract

Thermal energy storage and conversion aims to improve the high inefficiency of the industrial processes and renewable energy systems (supply versus demand). Chemical sorption processes and chemical reactions based on solid–gas systems are a promising way to store and convert thermal energy for heating or cooling applications and, thereby to increase the efficiency of the processes and to reduce the greenhouse effect. Although more efforts are required to bring this technology to the market, some important breakthrough have been made regarding to system efficiency. Over the last two decades, the experimental research in this field has increased largely to validate these advances under practical conditions. Therefore, this paper gives a state-of-art review of performances obtained under practical conditions by the different prototypes built over the last two decades. In addition, the main advantages and disadvantages of solid–gas chemical sorption processes and chemical reactions are summarized.

Suggested Citation

  • Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5207-5224
    DOI: 10.1016/j.rser.2012.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    2. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    3. Li, T.X. & Wang, R.Z. & Kiplagat, J.K. & Wang, L.W., 2009. "Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes," Applied Energy, Elsevier, vol. 86(7-8), pages 1201-1209, July.
    4. Saha, Bidyut B. & Boelman, Elisa C. & Kashiwagi, Takao, 1995. "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, Elsevier, vol. 20(10), pages 983-994.
    5. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    6. Goetz, V. & Spinner, B. & Lepinasse, E., 1997. "A solid-gas thermochemical cooling system using BaCl2 and NiCl2," Energy, Elsevier, vol. 22(1), pages 49-58.
    7. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    8. Yu, Y.Q. & Zhang, P. & Wu, J.Y. & Wang, R.Z., 2008. "Energy upgrading by solid-gas reaction heat transformer: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1302-1324, June.
    9. Kato, Y. & Sasaki, Y. & Yoshizawa, Y., 2005. "Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system," Energy, Elsevier, vol. 30(11), pages 2144-2155.
    10. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    11. Qin, Feng & Chen, Jiangping & Lu, Manqi & Chen, Zhijiu & Zhou, Yimin & Yang, Ke, 2007. "Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner," Renewable Energy, Elsevier, vol. 32(12), pages 2034-2052.
    12. Le Pierrès, Nolwenn & Stitou, Driss & Mazet, Nathalie, 2007. "New deep-freezing process using renewable low-grade heat: From the conceptual design to experimental results," Energy, Elsevier, vol. 32(4), pages 600-608.
    13. Oliveira, R.G. & Wang, R.Z. & Kiplagat, J.K. & Wang, C.Y., 2009. "Novel composite sorbent for resorption systems and for chemisorption air conditioners driven by low generation temperature," Renewable Energy, Elsevier, vol. 34(12), pages 2757-2764.
    14. M. Ibrahim & K. Sopian & W.R.W. Daud & M.A. Alghoul, 2009. "An experimental analysis of solar-assisted chemical heat pump dryer," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(2), pages 78-83, May.
    15. Stitou, Driss & Mazet, Nathalie & Bonnissel, Marc, 2004. "Performance of a high temperature hydrate solid/gas sorption heat pump used as topping cycle for cascaded sorption chillers," Energy, Elsevier, vol. 29(2), pages 267-285.
    16. Ma, Q. & Luo, L. & Wang, R.Z. & Sauce, G., 2009. "A review on transportation of heat energy over long distance: Exploratory development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1532-1540, August.
    17. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    2. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    3. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    4. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    5. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    6. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    7. Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
    8. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    9. Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
    10. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    11. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    12. Kiplagat, J.K. & Wang, R.Z. & Oliveira, R.G. & Li, T.X. & Liang, M., 2013. "Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat," Applied Energy, Elsevier, vol. 103(C), pages 571-580.
    13. Jiang, L. & Wang, L.W. & Luo, W.L. & Wang, R.Z., 2015. "Experimental study on working pairs for two-stage chemisorption freezing cycle," Renewable Energy, Elsevier, vol. 74(C), pages 287-297.
    14. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    15. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    16. Fadhel, M.I. & Sopian, K. & Daud, W.R.W. & Alghoul, M.A., 2011. "Review on advanced of solar assisted chemical heat pump dryer for agriculture produce," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1152-1168, February.
    17. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    18. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    19. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    20. Palomba, Valeria & Brancato, Vincenza & Frazzica, Andrea, 2017. "Experimental investigation of a latent heat storage for solar cooling applications," Applied Energy, Elsevier, vol. 199(C), pages 347-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5207-5224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.