IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v34y2017i01ns0217595917400061.html
   My bibliography  Save this article

Forecasting and Analyzing Internet Users of China with Lotka–Volterra Model

Author

Listed:
  • Xiaoxia Fu

    (School of Management, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230026, P. R. China)

  • Ping Zhang

    (International Business School, Anhui Foreign Languages University, No. 2, Fanhua Road, Hefei, Anhui 231201, P. R. China)

  • Juzhi Zhang

    (School of Management, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230026, P. R. China)

Abstract

In the background of big data era, the ability to accurately forecast the number of the Internet users has considerable implications for evaluating the growing trend of a newly-developed business. In this paper, we use four models, the Gompertz model, the Logistic model, the Bass model, and the Lotka–Volterra model, to forecast the Internet population in China with the historical data during 2007 to 2014. We compare the prediction accuracy of the four models using the criterions such as the mean absolute percentage error (MAPE), the mean absolute error (MAE) and the root mean square error (RMSE). We find that the Lotka–Volterra model has the highest prediction accuracy. Moreover, we use the Lotka–Volterra model to investigate the relationship between the rural Internet users and the urban Internet users in China. The estimation results show that the relationship is commensalism.

Suggested Citation

  • Xiaoxia Fu & Ping Zhang & Juzhi Zhang, 2017. "Forecasting and Analyzing Internet Users of China with Lotka–Volterra Model," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-18, February.
  • Handle: RePEc:wsi:apjorx:v:34:y:2017:i:01:n:s0217595917400061
    DOI: 10.1142/S0217595917400061
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595917400061
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595917400061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalakelis, Christos & Varoutas, Dimitris & Sphicopoulos, Thomas, 0. "Diffusion models of mobile telephony in Greece," Telecommunications Policy, Elsevier, vol. 32(3-4), pages 234-245, April.
    2. Chiang, Su-Yun, 2012. "An application of Lotka–Volterra model to Taiwan's transition from 200mm to 300mm silicon wafers," Technological Forecasting and Social Change, Elsevier, vol. 79(2), pages 383-392.
    3. Liikanen, Jukka & Stoneman, Paul & Toivanen, Otto, 2004. "Intergenerational effects in the diffusion of new technology: the case of mobile phones," International Journal of Industrial Organization, Elsevier, vol. 22(8-9), pages 1137-1154, November.
    4. Turk, Tomaž & Trkman, Peter, 2012. "Bass model estimates for broadband diffusion in European countries," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 85-96.
    5. Gruber, Harald & Verboven, Frank, 2001. "The diffusion of mobile telecommunications services in the European Union," European Economic Review, Elsevier, vol. 45(3), pages 577-588, March.
    6. Modis, Theodore, 1999. "Technological Forecasting at the Stock Market," OSF Preprints ctd6s, Center for Open Science.
    7. Paredes-Sánchez, José P. & García-Elcoro, Víctor E. & Rosillo-Calle, Frank & Xiberta-Bernat, Jorge, 2016. "Assessment of forest bioenergy potential in a coal-producing area in Asturias (Spain) and recommendations for setting up a Biomass Logistic Centre (BLC)," Applied Energy, Elsevier, vol. 171(C), pages 133-141.
    8. Rouvinen, Petri, 2006. "Diffusion of digital mobile telephony: Are developing countries different?," Telecommunications Policy, Elsevier, vol. 30(1), pages 46-63, February.
    9. Sundqvist, Sanna & Frank, Lauri & Puumalainen, Kaisu, 2005. "The effects of country characteristics, cultural similarity and adoption timing on the diffusion of wireless communications," Journal of Business Research, Elsevier, vol. 58(1), pages 107-110, January.
    10. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    11. Meade, Nigel & Islam, Towhidul, 1995. "Forecasting with growth curves: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 11(2), pages 199-215, June.
    12. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    13. Chu, Wen-Lin & Wu, Feng-Shang & Kao, Kai-Sheng & Yen, David C., 2009. "Diffusion of mobile telephony: An empirical study in Taiwan," Telecommunications Policy, Elsevier, vol. 33(9), pages 506-520, October.
    14. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    15. Lin, Chiun-Sin, 2013. "Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data," Economic Modelling, Elsevier, vol. 35(C), pages 207-213.
    16. Minkyu Lee & Youngsang Cho, 2007. "The diffusion of mobile telecommunications services in Korea," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 477-481.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    2. Avila, Luz Angelica Pirir & Lee, Deok-Joo & Kim, Taegu, 2018. "Diffusion and competitive relationship of mobile telephone service in Guatemala: An empirical analysis," Telecommunications Policy, Elsevier, vol. 42(2), pages 116-126.
    3. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    4. Sergei Sidorov & Alexey Faizliev & Vladimir Balash & Olga Balash & Maria Krylova & Aleksandr Fomenko, 2021. "Extended innovation diffusion models and their empirical performance on real propagation data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 99-110, June.
    5. Baburin, Vyacheslav & Zemtsov, Stepan, 2014. "Diffussion of ICT-products and "five Russias"," MPRA Paper 68926, University Library of Munich, Germany, revised 10 May 2014.
    6. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    7. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    8. Thakur Dhakal & Dae-Eun Lim, 2020. "Understanding ICT adoption in SAARC member countries," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 67-80, April.
    9. Yamakawa, Peter & Rees, Gareth H. & Manuel Salas, José & Alva, Nikolai, 2013. "The diffusion of mobile telephones: An empirical analysis for Peru," Telecommunications Policy, Elsevier, vol. 37(6), pages 594-606.
    10. Zaber, Moinul & Sirbu, Marvin, 2012. "Impact of spectrum management policy on the penetration of 3G technology," Telecommunications Policy, Elsevier, vol. 36(9), pages 762-782.
    11. Tseng, Fang-Mei & Wang, Shenq-Yuan & Hsieh, Chih-Hung & Guo, Aifang, 2014. "An integrated model for analyzing the development of the 4G telecommunications market in Taiwan," Telecommunications Policy, Elsevier, vol. 38(1), pages 14-31.
    12. Ashutosh Jha & Debashis Saha, 2022. "Mobile Broadband for Inclusive Connectivity: What Deters the High-Capacity Deployment of 4G-LTE Innovation in India?," Information Systems Frontiers, Springer, vol. 24(4), pages 1305-1329, August.
    13. Lin, Chiun-Sin, 2013. "Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data," Economic Modelling, Elsevier, vol. 35(C), pages 207-213.
    14. Riikonen, Antti & Smura, Timo & Kivi, Antero & Töyli, Juuso, 2013. "Diffusion of mobile handset features: Analysis of turning points and stages," Telecommunications Policy, Elsevier, vol. 37(6), pages 563-572.
    15. Winkler, Kay, 2014. "Potential Effects of New Zealand's Policy on Next Generation High-Speed Access Networks," Working Paper Series 4347, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    16. Jongsu Lee & Minkyu Lee, 2009. "Analysis on the growth of telecommunication services: a global comparison of diffusion patterns," Applied Economics, Taylor & Francis Journals, vol. 41(24), pages 3143-3150.
    17. repec:vuw:vuwscr:19308 is not listed on IDEAS
    18. Gupta, Ruchita & Jain, Karuna, 2016. "Competition effect of a new mobile technology on an incumbent technology: An Indian case study," Telecommunications Policy, Elsevier, vol. 40(4), pages 332-342.
    19. Qian, Lixian & Soopramanien, Didier, 2014. "Using diffusion models to forecast market size in emerging markets with applications to the Chinese car market," Journal of Business Research, Elsevier, vol. 67(6), pages 1226-1232.
    20. Sanjay Kumar SINGH & Vijay Lakshmi SINGH, 2023. "Internet diffusion in India: A study based on Growth Curve modelling," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 15(2), pages 29-42, June.
    21. Winkler, Kay, 2014. "Potential Effects of New Zealand's Policy on Next Generation High-Speed Access Networks," Working Paper Series 19308, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:34:y:2017:i:01:n:s0217595917400061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.