IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v11y1995i2p199-215.html
   My bibliography  Save this article

Forecasting with growth curves: An empirical comparison

Author

Listed:
  • Meade, Nigel
  • Islam, Towhidul

Abstract

No abstract is available for this item.

Suggested Citation

  • Meade, Nigel & Islam, Towhidul, 1995. "Forecasting with growth curves: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 11(2), pages 199-215, June.
  • Handle: RePEc:eee:intfor:v:11:y:1995:i:2:p:199-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0169-2070(94)00556-R
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    2. Bewley, Ronald & Fiebig, Denzil G., 1988. "A flexible logistic growth model with applications in telecommunications," International Journal of Forecasting, Elsevier, vol. 4(2), pages 177-192.
    3. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Pesaran, M H, 1982. "Comparison of Local Power of Alternative Tests of Non-Nested Regression Models," Econometrica, Econometric Society, vol. 50(5), pages 1287-1305, September.
    6. Scott Armstrong, J. & Brodie, Roderick J. & McIntyre, Shelby H., 1987. "Forecasting methods for marketing: Review of empirical research," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 355-376.
    7. Nigel Meade, 1988. "A Modified Logistic Model Applied to Human Populations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 151(3), pages 491-498, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    2. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.
    3. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    4. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    5. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
    6. repec:rri:wpaper:201303 is not listed on IDEAS
    7. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    8. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    9. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    10. Wagner A. Kamakura & Siva K. Balasubramanian, 1987. "Long‐term forecasting with innovation diffusion models: The impact of replacement purchases," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 6(1), pages 1-19.
    11. John H. Roberts & Charles J. Nelson & Pamela D. Morrison, 2005. "A Prelaunch Diffusion Model for Evaluating Market Defense Strategies," Marketing Science, INFORMS, vol. 24(1), pages 150-164, August.
    12. Terregrossa, Ralph A., 1997. "Capital depreciation and investment demand," The Quarterly Review of Economics and Finance, Elsevier, vol. 37(1), pages 79-95.
    13. Charles W. Bischoff & Steven C. Hine, 1992. "A Test of Fischer's Theory of Monetary Misperceptions and the Business Cycle in the Presence of Long-Term Contracts," Eastern Economic Journal, Eastern Economic Association, vol. 18(1), pages 99-110, Winter.
    14. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    15. Chul-Yong Lee & Min-Kyu Lee, 2017. "Demand Forecasting in the Early Stage of the Technology’s Life Cycle Using a Bayesian Update," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    16. S. Buxton & Kostas Nikolopoulos & M. Khammash & P. Stern, 2015. "Modelling and Forecasting Branded and Generic Pharmaceutical Life Cycles: Assessment of the Number of Dispensed Units," Working Papers 15004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    17. Sumiko Asai, 2009. "Sales Patterns of Hit Music in Japan," Journal of Media Economics, Taylor & Francis Journals, vol. 22(2), pages 81-101.
    18. Gelper, Sarah & Stremersch, Stefan, 2014. "Variable selection in international diffusion models," International Journal of Research in Marketing, Elsevier, vol. 31(4), pages 356-367.
    19. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    20. Pons Novell, Jordi, 1997. "Selección de modelos no anidados. Un estudio de Monte Carlo," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 7, pages 131-139, Junio.
    21. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:11:y:1995:i:2:p:199-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.