IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v32y2024i1p307-324.html
   My bibliography  Save this article

Impact of digital economy on urban sustainable development: Evidence from Chinese cities

Author

Listed:
  • Yang Liu
  • Yanxiang Xie
  • Kaiyang Zhong

Abstract

Digital economy takes data as its core input element and has high green value, but does the development of digital economy necessarily promote sustainable development? We use 286 Chinese cities from 2011 to 2019 as a case study to examine the impact of digital economy on urban sustainable development, and discuss the mechanisms of digital economy on urban sustainable development, heterogeneous impacts, threshold effects of environmental regulations, and the role of National Big Data Comprehensive Pilot Zone. It was found that: (1) The digital economy has green value and can effectively contribute to urban sustainable development. (2) The digital economy can achieve urban sustainable development by enhancing green technological innovation and human capital. (3) Environmental regulation has a threshold effect in the digital economy driving urban sustainable development. (4) The establishment of National Big Data Comprehensive Pilot Zone can promote urban sustainable development. (5) The polarization effect of the level of urban sustainable development in first‐tier and second‐tier cities is still increasing under the background of digital economy, which intensifies the “Matthew effect” among different levels of cities, and the inclusiveness of digital economy has not really been reflected in China. This study explores the influence and mechanism of digital economy on urban sustainable development in the context of China, which is of great theoretical and practical significance for developing countries to solve Solow productivity paradox and realize urban sustainable development in the new development stage.

Suggested Citation

  • Yang Liu & Yanxiang Xie & Kaiyang Zhong, 2024. "Impact of digital economy on urban sustainable development: Evidence from Chinese cities," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 307-324, February.
  • Handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:307-324
    DOI: 10.1002/sd.2656
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2656
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. William L. Weber & Bruce Domazlicky, 2001. "Productivity Growth and Pollution in State Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 195-199, February.
    3. Lin, Boqiang & Zhu, Junpeng, 2019. "Fiscal spending and green economic growth: Evidence from China," Energy Economics, Elsevier, vol. 83(C), pages 264-271.
    4. Virginia D. McConnell & Robert M. Schwab, 1990. "The Impact of Environmental Regulation on Industry Location Decisions: The Motor Vehicle Industry," Land Economics, University of Wisconsin Press, vol. 66(1), pages 67-81.
    5. Chen, Yongmin, 2020. "Improving market performance in the digital economy," China Economic Review, Elsevier, vol. 62(C).
    6. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    7. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    8. Hering, Laura & Poncet, Sandra, 2014. "Environmental policy and exports: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 296-318.
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    11. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    12. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    13. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    14. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    15. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    16. Mariana Viollaz, 2019. "Information and communication technology adoption in micro and small firms: Can internet access improve labour productivity?," Development Policy Review, Overseas Development Institute, vol. 37(5), pages 692-715, September.
    17. Hunjra, Ahmed Imran & Azam, Muhammad & Bruna, Maria Giuseppina & Taskin, Dilvin, 2022. "Role of financial development for sustainable economic development in low middle income countries," Finance Research Letters, Elsevier, vol. 47(PB).
    18. Gollop, Frank M & Roberts, Mark J, 1983. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
    19. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    20. Managi, Shunsuke & Jimichi, Masayuki & Saka, Chika, 2021. "Human capital development: Lessons from global corporate data," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 268-275.
    21. Alwyn Young, 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1220-1261, December.
    22. Xu, Aiting & Zhu, Yuhan & Wang, Wenpu, 2023. "Micro green technology innovation effects of green finance pilot policy—From the perspectives of action points and green value," Journal of Business Research, Elsevier, vol. 159(C).
    23. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    24. Gary S. Becker, 1962. "Investment in Human Capital: A Theoretical Analysis," NBER Chapters, in: Investment in Human Beings, pages 9-49, National Bureau of Economic Research, Inc.
    25. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    26. Shu-Chen Chang & Meng-Hua Li, 2019. "Impacts of Foreign Direct Investment and Economic Development on Carbon Dioxide Emissions Across Different Population Regimes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 583-607, February.
    27. Rui Li & Jing Rao & Liangyong Wan, 2022. "The digital economy, enterprise digital transformation, and enterprise innovation," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2875-2886, October.
    28. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    29. Che, Chou Ming, 2013. "Panel threshold analysis of Taiwan's outbound visitors," Economic Modelling, Elsevier, vol. 33(C), pages 787-793.
    30. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    31. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    32. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    33. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangqin Li & Wenqi Niu, 2025. "How does fintech promote urban innovation? empirical evidence from China," Economic Change and Restructuring, Springer, vol. 58(1), pages 1-26, February.
    2. Jianyue Ji & Yanming Li, 2024. "Does fishery digitalization matter in the sustainable development of fisheries? Evidence from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 7382-7396, December.
    3. Qiaozhe Guo & Nengzhi(Chris) Yao & Zhe Ouyang & Yaolei Wang, 2024. "Digital development and innovation for environmental sustainability: The role of government support and government intervention," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3389-3404, August.
    4. Lina Zhang & Sai Liu & Yung‐ho Chiu & Qinghua Pang & Qiyong Chen & Changfeng Shi, 2024. "Assessing China's energy‐related efficiency towards SDG7 and influencing factors," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6449-6470, December.
    5. Chunshan Zhou & Xiaoli Wei & Xiangjun Dai & Guojun Zhang, 2025. "Research on the Spatio-Temporal Evolution and Impact of China’s Digital Economy and Green Innovation," Land, MDPI, vol. 14(3), pages 1-26, March.
    6. Asif Ali & Jinkai Li & Jin Zhang & Muhammad Zubair Chishti, 2024. "Exploring the impact of green finance and technological innovation on green economic growth: Evidence from emerging market economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6392-6407, December.
    7. Wei Zheng & Hongliang Qiu & Alastair M. Morrison, 2024. "The effects of knowledge of tourist civility and Taoist values on tourist civility intentions based on an extended theory of planned behavior," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6017-6032, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    2. Li, Chengyou & Zheng, Chunji & Liu, Mengxun & Wang, Zeru, 2024. "Digital economy spillover on energy saving and emission reduction: Evidence from China," Energy, Elsevier, vol. 308(C).
    3. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    4. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    5. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    6. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    7. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    8. Xiguang Cao & Min Deng & Fei Song & Shihu Zhong & Junhao Zhu, 2019. "Direct and moderating effects of environmental regulation intensity on enterprise technological innovation: The case of China," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-20, October.
    9. Wei, Xiahai & Jiang, Feng & Chen, Yu, 2023. "Who pays for environmental protection? The impact of green tax reform on labor share in China," Energy Economics, Elsevier, vol. 125(C).
    10. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    11. Du, Zhili & Wang, Yao, 2022. "Does energy-saving and emission reduction policy affects carbon reduction performance? A quasi-experimental evidence in China," Applied Energy, Elsevier, vol. 324(C).
    12. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    13. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    14. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    15. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    16. Siliang Guo & Yanhua Diao & Junliang Du, 2022. "Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China," IJERPH, MDPI, vol. 19(22), pages 1-32, November.
    17. Yu, Yanni & Wu, Wenjie & Zhang, Tao & Liu, Yanchu, 2016. "Environmental catching-up, eco-innovation, and technological leadership in China's pilot ecological civilization zones," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 228-236.
    18. Cao, Yuqiang & Hu, Yong & Liu, Qian & Lu, Meiting & Shan, Yaowen, 2023. "Job creation or disruption? Unraveling the effects of smart city construction on corporate employment in China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    19. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    20. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:307-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.