IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i4p963-972.html
   My bibliography  Save this article

Using Bayesian Networks to Model Expected and Unexpected Operational Losses

Author

Listed:
  • Martin Neil
  • Norman Fenton
  • Manesh Tailor

Abstract

This report describes the use of Bayesian networks (BNs) to model statistical loss distributions in financial operational risk scenarios. Its focus is on modeling “long” tail, or unexpected, loss events using mixtures of appropriate loss frequency and severity distributions where these mixtures are conditioned on causal variables that model the capability or effectiveness of the underlying controls process. The use of causal modeling is discussed from the perspective of exploiting local expertise about process reliability and formally connecting this knowledge to actual or hypothetical statistical phenomena resulting from the process. This brings the benefit of supplementing sparse data with expert judgment and transforming qualitative knowledge about the process into quantitative predictions. We conclude that BNs can help combine qualitative data from experts and quantitative data from historical loss databases in a principled way and as such they go some way in meeting the requirements of the draft Basel II Accord (Basel, 2004) for an advanced measurement approach (AMA).

Suggested Citation

  • Martin Neil & Norman Fenton & Manesh Tailor, 2005. "Using Bayesian Networks to Model Expected and Unexpected Operational Losses," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 963-972, August.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:4:p:963-972
    DOI: 10.1111/j.1539-6924.2005.00641.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00641.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00641.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 21(Mar), pages 2-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    2. Cornwell, Nikki & Bilson, Christopher & Gepp, Adrian & Stern, Steven & Vanstone, Bruce J., 2023. "Modernising operational risk management in financial institutions via data-driven causal factors analysis: A pre-registered report," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    3. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    4. Yuqian Xu & Tom Fangyun Tan & Serguei Netessine, 2022. "The Impact of Workload on Operational Risk: Evidence from a Commercial Bank," Management Science, INFORMS, vol. 68(4), pages 2668-2693, April.
    5. Yuan Hong & Shaojian Qu, 2024. "Beyond Boundaries: The AHP-DEA Model for Holistic Cross-Banking Operational Risk Assessment," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
    6. Ballester, Laura & López, Jesúa & Pavía, Jose M., 2023. "European systemic credit risk transmission using Bayesian networks," Research in International Business and Finance, Elsevier, vol. 65(C).
    7. Tom X Hackbarth & Julian D. May & Sinoxolo Magaya & Peter H Verburg, 2025. "Food systems modelling to evaluate interventions for food and nutrition security in an African urban context," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 145-160, February.
    8. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    9. Emma Apps, 2020. "Applying a Bayesian Network to VaR Calculations," Working Papers 202024, University of Liverpool, Department of Economics.
    10. Johnson Holt & Adrian W. Leach & Gritta Schrader & Françoise Petter & Alan MacLeod & Dirk Jan van der Gaag & Richard H. A. Baker & John D. Mumford, 2014. "Eliciting and Combining Decision Criteria Using a Limited Palette of Utility Functions and Uncertainty Distributions: Illustrated by Application to Pest Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 4-16, January.
    11. Hatoum, Khalil & Moussu, Christophe & Gillet, Roland, 2022. "CEO overconfidence: Towards a new measure," International Review of Financial Analysis, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    2. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    3. Hailiang Yang, 2000. "An Integrated Risk Management Method: VaR Approach," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 201-219, September.
    4. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    5. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    6. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    7. John Cotter, 2004. "Downside risk for European equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(10), pages 707-716.
    8. José Carlos Ramirez Sánchez, 2004. "Usos y limitaciones de los procesos estocásticos en el tratamiento de distribuciones de rendimientos con colas gordas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 51-76, June.
    9. de Araújo, André da Silva & Garcia, Maria Teresa Medeiros, 2013. "Risk contagion in the north-western and southern European stock markets," Journal of Economics and Business, Elsevier, vol. 69(C), pages 1-34.
    10. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    11. Kóbor, Ádám, 2000. "A feltétel nélküli normalitás egyszerű alternatívái a kockáztatott érték számításában [The simple alternatives of unconditional normality in the calculation of value at risk]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 878-898.
    12. Huang, Alex YiHou, 2010. "An optimization process in Value-at-Risk estimation," Review of Financial Economics, Elsevier, vol. 19(3), pages 109-116, August.
    13. Marco Bee, 2007. "The asymptotic loss distribution in a fat-tailed factor model of portfolio credit risk," Department of Economics Working Papers 0701, Department of Economics, University of Trento, Italia.
    14. Dieter G. Kaiser & Denis Schweizer & Lue Wu, 2012. "Efficient Hedge Fund Strategy Allocations – Systematic Framework for Investors that Incorporates Higher Moments," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 21(5), pages 241-260, December.
    15. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    16. Tak Siu & Howell Tong & Hailiang Yang, 2004. "On Bayesian Value at Risk: From Linear to Non-Linear Portfolios," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 161-184, June.
    17. Lola Redondo-Rodríguez & Diana C. Pérez-Bustamante Yábar & Eloísa Díaz-Garrido, 2023. "Impact of technological innovation on digital entrepreneurship and the effects on the economy," International Entrepreneurship and Management Journal, Springer, vol. 19(3), pages 1501-1526, September.
    18. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    19. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
    20. Judy Hsu & Kuo-An Li, 2013. "Performance assessments of Taiwan’s financial holding companies," Journal of Productivity Analysis, Springer, vol. 40(1), pages 137-151, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:4:p:963-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.