IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

On Bayesian Value at Risk: From Linear to Non-Linear Portfolios

  • Tak Siu


  • Howell Tong


  • Hailiang Yang


This paper proposes the use of Bayesian approach to implement Value at Risk (VaR) model for both linear and non-linear portfolios. The Bayesian approach provides risk traders with the flexibility of adjusting their VaR models according to their subjective views. First, we deal with the case of linear portfolios. By imposing the conjugate-prior assumptions, a closed-form expression for the Bayesian VaR is obtained. The Bayesian VaR model can also be adjusted in order to deal with the ageing effect of the past data. By adopting Gerber-Shiu's option-pricing model, our Bayesian VaR model can also be applied to deal with non-linear portfolios of derivatives. We obtain an exact formula for the Bayesian VaR in the case of a single European call option. We adopt the method of back-testing to compare the non-adjusted and adjusted Bayesian VaR models with their corresponding classical counterparts in both linear and non-linear cases. Copyright Springer Science+Business Media, Inc. 2004

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Asia-Pacific Financial Markets.

Volume (Year): 11 (2004)
Issue (Month): 2 (June)
Pages: 161-184

in new window

Handle: RePEc:kap:apfinm:v:11:y:2004:i:2:p:161-184
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
  2. Wolfgang J. Runggaldier & Anna Zaccaria, 2000. "A Stochastic Control Approach to Risk Management Under Restricted Information," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 277-288.
  3. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  5. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
  6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  7. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
  8. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
  9. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:11:y:2004:i:2:p:161-184. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.