IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03910136.html
   My bibliography  Save this paper

Quantitative Reverse Stress Testing, Bottom Up

Author

Listed:
  • Claudio Albanese
  • Stéphane Crépey

    (UFR Mathématiques UPCité - UFR Mathématiques [Sciences] - Université Paris Cité - UPCité - Université Paris Cité)

  • Stefano Iabichino

Abstract

We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. We find that such an approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.

Suggested Citation

  • Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2022. "Quantitative Reverse Stress Testing, Bottom Up," Working Papers hal-03910136, HAL.
  • Handle: RePEc:hal:wpaper:hal-03910136
    Note: View the original document on HAL open archive server: https://hal.science/hal-03910136
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03910136/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    2. Tak Siu & Howell Tong & Hailiang Yang, 2004. "On Bayesian Value at Risk: From Linear to Non-Linear Portfolios," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 161-184, June.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. Giuseppe Montesi & Giovanni Papiro, 2018. "Bank Stress Testing: A Stochastic Simulation Framework to Assess Banks’ Financial Fragility †," Risks, MDPI, vol. 6(3), pages 1-54, August.
    5. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    6. Albanese, Claudio & Vidler, Alicia, 2007. "A STRUCTURAL MODEL FOR CREDIT-EQUITY DERIVATIVES AND BESPOKE CDOs," MPRA Paper 5227, University Library of Munich, Germany, revised 09 Sep 2007.
    7. Claudio Albanese & Toufik Bellaj & Guillaume Gimonet & Giacomo Pietronero, 2011. "Coherent global market simulations and securitization measures for counterparty credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 1-20.
    8. Giuseppe Montesi & Giovanni Papiro & Massimiliano Fazzini & Alessandro Ronga, 2020. "Stochastic Optimization System for Bank Reverse Stress Testing," JRFM, MDPI, vol. 13(8), pages 1-44, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Montesi & Giovanni Papiro & Massimiliano Fazzini & Alessandro Ronga, 2020. "Stochastic Optimization System for Bank Reverse Stress Testing," JRFM, MDPI, vol. 13(8), pages 1-44, August.
    2. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    3. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    4. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    5. Bühler, Wolfgang & Korn, Olaf, 1998. "Hedging langfristiger Lieferverpflichtungen mit kurzfristigen Futures: möglich oder unmöglich?," ZEW Discussion Papers 98-20, ZEW - Leibniz Centre for European Economic Research.
    6. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    9. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    10. Sascha Meyer & Willi Schwarz, 2003. "A PDE based Implementation of the Hull&White Model for Cashflow Derivatives," Computational Statistics, Springer, vol. 18(3), pages 417-434, September.
    11. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    12. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    13. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    14. Nicole Branger & An Chen & Antje Mahayni & Thai Nguyen, 2023. "Optimal collective investment: an analysis of individual welfare," Mathematics and Financial Economics, Springer, volume 17, number 5, June.
    15. Spiros H. Martzoukos & Theodore M. Barnhill Jr., 1998. "The Survival Zone For A Bond With Both Call And Put Options Embedded," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 21(4), pages 419-430, December.
    16. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    17. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    18. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    19. Roberto Baviera, 2019. "Back-Of-The-Envelope Swaptions In A Very Parsimonious Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-24, August.
    20. Luca Capriotti & Yupeng Jiang & Gaukhar Shaimerdenova, 2019. "Approximation Methods For Inhomogeneous Geometric Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03910136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.