IDEAS home Printed from
   My bibliography  Save this article

A numerical PDE approach for pricing callable bonds


  • Y. D'Halluin
  • P. A. Forsyth
  • K. R. Vetzal
  • G. Labahn


Many debt issues contain an embedded call option that allows the issuer to redeem the bond at specified dates for a specified price. The issuer is typically required to provide advance notice of a decision to exercise this call option. The valuation of these contracts is an interesting numerical exercise because discontinuities may arise in the bond value or its derivative at call and/or notice dates. Recently, it has been suggested that finite difference methods cannot be used to price callable bonds requiring notice. Poor accuracy was attributed to discontinuities and difficulties in handling boundary conditions. As an alternative, a semi-analytical method using Green's functions for valuing callable bonds with notice was proposed. Unfortunately, the Green's function method is limited to special cases. Consequently, it is desirable to develop a more general approach. This is provided by using more advanced techniques such as flux limiters to obtain an accurate numerical partial differential equation method. Finally, in a typical pricing model an inappropriate financial condition is required in order to properly specify boundary conditions for the associated PDE. It is shown that a small perturbation of such a model is free from such artificial conditions.

Suggested Citation

  • Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
  • Handle: RePEc:taf:apmtfi:v:8:y:2001:i:1:p:49-77 DOI: 10.1080/13504860110046885

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Francis A. Longstaff & Bruce A. Tuckman, 1994. "Calling Nonconvertible Debt and the Problem of Related Wealth Transfer Effect," Financial Management, Financial Management Association, vol. 23(4), Winter.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Ram Bhar & Carl Chiarella & Nadima El-Hassan & Xiaosu Zheng, 2000. "The Reduction of Forward Rate Dependent Volatility HJM Models to Markovian Form: Pricing European Bond Option," Research Paper Series 36, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    8. Mauer, David C, 1993. "Optimal Bond Call Policies under Transactions Costs," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 16(1), pages 23-37, Spring.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    2. Hatem Ben-Ameur & Michèle Breton, 2004. "A Dynamic Programming Approach for Pricing Options Embedded in Bonds," Computing in Economics and Finance 2004 237, Society for Computational Economics.
    3. Dongjae Lim & Lingfei Li & Vadim Linetsky, 2012. "Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach," Papers 1206.5046,
    4. d'Halluin, Y. & Forsyth, P.A. & Vetzal, K.R., 2007. "Wireless network capacity management: A real options approach," European Journal of Operational Research, Elsevier, vol. 176(1), pages 584-609, January.
    5. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:8:y:2001:i:1:p:49-77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.