IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v31y2007i7p2212-2233.html
   My bibliography  Save this article

A dynamic programming approach for pricing options embedded in bonds

Author

Listed:
  • Ben-Ameur, Hatem
  • Breton, Michele
  • Karoui, Lotfi
  • L'Ecuyer, Pierre

Abstract

No abstract is available for this item.

Suggested Citation

  • Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
  • Handle: RePEc:eee:dyncon:v:31:y:2007:i:7:p:2212-2233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(06)00142-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    2. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 87-100, March.
    5. Ananthanarayanan, A L & Schwartz, Eduardo S, 1980. "Retractable and Extendible Bonds: The Canadian Experience," Journal of Finance, American Finance Association, vol. 35(1), pages 31-47, March.
    6. Robert R. Bliss & Ehud I. Ronn, 1995. "To call or not to call?: optimal call policies for callable U.S. Treasury bonds," Economic Review, Federal Reserve Bank of Atlanta, vol. 80(Nov), pages 1-14.
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Farshid Jamshidian, 1996. "Bond, futures and option evaluation in the quadratic interest rate model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(2), pages 93-115.
    9. Brennan, Michael J. & Schwartz, Eduardo S., 1980. "Analyzing Convertible Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(4), pages 907-929, November.
    10. Courtadon, Georges, 1982. "The Pricing of Options on Default-Free Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 75-100, March.
    11. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    12. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    13. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    14. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    15. Richard, Scott F., 1978. "An arbitrage model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 33-57, March.
    16. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    17. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    18. Brennan, Michael J. & Schwartz, Eduardo S., 1977. "Savings bonds, retractable bonds and callable bonds," Journal of Financial Economics, Elsevier, vol. 5(1), pages 67-88, August.
    19. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    22. Rabinovitch, Ramon, 1989. "Pricing Stock and Bond Options when the Default-Free Rate is Stochastic," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(4), pages 447-457, December.
    23. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    24. Marsh, Terry A & Rosenfeld, Eric R, 1983. "Stochastic Processes for Interest Rates and Equilibrium Bond Prices," Journal of Finance, American Finance Association, vol. 38(2), pages 635-646, May.
    25. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    26. Hans‐Jürg Büttler & Jorg Waldvogel, 1996. "Pricing Callable Bonds By Means Of Green'S Function1," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 53-88, January.
    27. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    28. F. Jamshidian, 1995. "A simple class of square-root interest-rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(1), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    2. Dias, José Carlos & Shackleton, Mark B., 2011. "Hysteresis effects under CIR interest rates," European Journal of Operational Research, Elsevier, vol. 211(3), pages 594-600, June.
    3. Ehsan Hajizadeh & Masoud Mahootchi, 2019. "Developing a Risk-Based Approach for American Basket Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1593-1612, April.
    4. Dongjae Lim & Lingfei Li & Vadim Linetsky, 2012. "Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach," Papers 1206.5046, arXiv.org.
    5. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    6. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    7. Yi-Long Hsiao & Chien-Jung Ting, 2022. "Pricing Rent-to-Own Options with a Barrier Level: Taking Housing Contracts as an Example," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(5), pages 1-3.
    8. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    9. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    10. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatem Ben-Ameur & Michèle Breton, 2004. "A Dynamic Programming Approach for Pricing Options Embedded in Bonds," Computing in Economics and Finance 2004 237, Society for Computational Economics.
    2. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    6. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    8. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    9. repec:wyi:journl:002108 is not listed on IDEAS
    10. Dahlquist, Magnus, 1996. "On alternative interest rate processes," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1093-1119, July.
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    12. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    13. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    14. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    15. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    16. Sercu, P., 1991. "Bond options and bond portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 10(3), pages 203-230, December.
    17. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    18. Kristensen, Dennis, 2004. "A semiparametric single-factor model of the term structure," LSE Research Online Documents on Economics 24741, London School of Economics and Political Science, LSE Library.
    19. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    21. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:31:y:2007:i:7:p:2212-2233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.