IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v241y2015i1p109-121.html
   My bibliography  Save this article

A cyclical square-root model for the term structure of interest rates

Author

Listed:
  • Moreno, Manuel
  • Platania, Federico

Abstract

This paper presents a cyclical square-root model for the term structure of interest rates assuming that the spot rate converges to a certain time-dependent long-term level. This model incorporates the fact that the interest rate volatility depends on the interest rate level and specifies the mean reversion level and the interest rate volatility using harmonic oscillators. In this way, we incorporate a good deal of flexibility and provide a high analytical tractability. Under these assumptions, we compute closed-form expressions for the values of different fixed income and interest rate derivatives. Finally, we analyze the empirical performance of the cyclical model versus that proposed in Cox et al. (1985) and show that it outperforms this benchmark, providing a better fitting to market data.

Suggested Citation

  • Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:1:p:109-121
    DOI: 10.1016/j.ejor.2014.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714006456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    2. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    3. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 115-130, March.
    4. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Brigo, Damiano & Mercurio, Fabio & Morini, Massimo, 2005. "The LIBOR model dynamics: Approximations, calibration and diagnostics," European Journal of Operational Research, Elsevier, vol. 163(1), pages 30-51, May.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Schmidt, Wolfgang M., 2011. "Interest rate term structure modelling," European Journal of Operational Research, Elsevier, vol. 214(1), pages 1-14, October.
    9. Date, Paresh & Wang, Chieh, 2009. "Linear Gaussian affine term structure models with unobservable factors: Calibration and yield forecasting," European Journal of Operational Research, Elsevier, vol. 195(1), pages 156-166, May.
    10. Brennan, Michael J. & Schwartz, Eduardo S., 1980. "Analyzing Convertible Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(4), pages 907-929, November.
    11. Schaefer, Stephen M. & Schwartz, Eduardo S., 1984. "A Two-Factor Model of the Term Structure: An Approximate Analytical Solution," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 19(4), pages 413-424, December.
    12. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    13. Vetzal, Kenneth R., 1994. "A survey of stochastic continuous time models of the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 139-161, May.
    14. Abaffy, Jozsef & Bertocchi, Marida & Gnudi, Adriana, 2005. "Extensions of the Ho and Lee interest-rate model to the multinomial case," European Journal of Operational Research, Elsevier, vol. 163(1), pages 154-169, May.
    15. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    16. Donatien Hainaut, 2009. "Dynamic asset allocation under VaR constraint with stochastic interest rates," Annals of Operations Research, Springer, vol. 172(1), pages 97-117, November.
    17. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    18. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    19. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    20. Munk, Claus, 2015. "Fixed Income Modelling," OUP Catalogue, Oxford University Press, number 9780198716440.
    21. Weissensteiner, Alex, 2010. "Using the Black-Derman-Toy interest rate model for portfolio optimization," European Journal of Operational Research, Elsevier, vol. 202(1), pages 175-181, April.
    22. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    23. Mercurio, F. & Moraleda, J. M., 2000. "An analytically tractable interest rate model with humped volatility," European Journal of Operational Research, Elsevier, vol. 120(1), pages 205-214, January.
    24. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    25. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    26. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    27. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    28. Mitra, Sovan & Date, Paresh & Mamon, Rogemar & Wang, I-Chieh, 2013. "Pricing and risk management of interest rate swaps," European Journal of Operational Research, Elsevier, vol. 228(1), pages 102-111.
    29. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    30. Lin Chen, "undated". "Interest Rate Dynamics and Derivatives Pricing," Computing in Economics and Finance 1997 129, Society for Computational Economics.
    31. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    32. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    33. Chen, Homing & Hu, Cheng-Feng, 2010. "A relaxed cutting plane algorithm for solving the Vasicek-type forward interest rate model," European Journal of Operational Research, Elsevier, vol. 204(2), pages 343-354, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beáta Stehlíková, 2021. "New Approximations to Bond Prices in the Cox–Ingersoll–Ross Convergence Model with Dynamic Correlation," Mathematics, MDPI, vol. 9(13), pages 1-10, June.
    2. Xu Sun & Yunan Liu, 2021. "Staffing many‐server queues with autoregressive inputs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 312-326, April.
    3. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    4. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2018. "A term structure model under cyclical fluctuations in interest rates," Economic Modelling, Elsevier, vol. 72(C), pages 140-150.
    5. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Cousin, Areski & Maatouk, Hassan & Rullière, Didier, 2016. "Kriging of financial term-structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 631-648.
    7. Renne, Jean-Paul, 2016. "A tractable interest rate model with explicit monetary policy rates," European Journal of Operational Research, Elsevier, vol. 251(3), pages 873-887.
    8. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    9. Tarik Bazgour & Federico Platania, 2022. "A defaultable bond model with cyclical fluctuations in the spread process," Annals of Operations Research, Springer, vol. 312(2), pages 647-672, May.
    10. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2020. "Forecasting interest rates through Vasicek and CIR models: A partitioning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 569-579, July.
    11. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    12. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2018. "On The Calibration of Short-Term Interest Rates Through a CIR Model," Papers 1806.03683, arXiv.org.
    13. Fanelli, Viviana, 2017. "Implications of implicit credit spread volatilities on interest rate modelling," European Journal of Operational Research, Elsevier, vol. 263(2), pages 707-718.
    14. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    6. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    7. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    8. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    9. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    10. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    12. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    13. repec:wyi:journl:002109 is not listed on IDEAS
    14. Michael A H Dempster & Elena A Medova & Michael Villaverde, 2010. "Long-term interest rates and consol bond valuation," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 113-135, June.
    15. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    16. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    17. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    18. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    19. repec:uts:finphd:40 is not listed on IDEAS
    20. David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
    21. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    22. repec:wyi:journl:002108 is not listed on IDEAS
    23. repec:dau:papers:123456789/5374 is not listed on IDEAS
    24. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:1:p:109-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.