IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/255.html
   My bibliography  Save this paper

Modelling the Evolution of Credit Spreads Using the Cox Process Within the HJM Framework A CDS Option Pricing Model

Author

Listed:

Abstract

In this paper a simulation approach for defaultable yield curves is developed within the Heath et al. (1992) framework. The default event is modelled using the Cox process where the stochastic intensity represents the credit spread. The forward credit spread volatility function is affected by the entire credit spread term structure. The paper provides the defaultable bond and credit default swap option price in a probability setting equipped with a sub filtration structure. The Euler-Maruyama stochastic integral approximation and the Monte Carlo method are applied to develop a numerical algorithm for pricing. Finally, the Antithetic Variable technique is used to reduce the variance of credit default swap option prices.

Suggested Citation

  • Carl Chiarella & Viviana Fanelli & Silvana Musti, 2009. "Modelling the Evolution of Credit Spreads Using the Cox Process Within the HJM Framework A CDS Option Pricing Model," Research Paper Series 255, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:255
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp255.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    2. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    5. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    6. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    7. Chunsheng Zhou, 1997. "A jump-diffusion approach to modeling credit risk and valuing defaultable securities," Finance and Economics Discussion Series 1997-15, Board of Governors of the Federal Reserve System (U.S.).
    8. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    9. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2000. "A Discrete-Time Approach to Arbitrage-Free Pricing of Credit Derivatives," Management Science, INFORMS, vol. 46(1), pages 46-62, January.
    10. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    11. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    12. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    13. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    14. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    16. Viviana Fanelli & Silvana Musti, 2007. "Modelling Credit Spreads evolution using the Cox Process within the HJM framework," Quaderni DSEMS 27-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    17. Chen, Ren-Raw & Cheng, Xiaolin & Fabozzi, Frank J. & Liu, Bo, 2008. "An Explicit, Multi-Factor Credit Default Swap Pricing Model with Correlated Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(1), pages 123-160, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    2. Lee, Shyan Yuan & Chiou, Wan-Jiun Paul & Chung, Yi-Fang, 2017. "Pricing corporate bonds and constructing credit curves in a developing country: The case of the Taiwan bond fund crisis," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 261-274.
    3. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos Sklibosios, 2013. "Credit Derivatives Pricing With Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-28.
    4. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity," Papers 2409.09179, arXiv.org.
    5. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    6. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    7. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    8. Fanelli, Viviana, 2017. "Implications of implicit credit spread volatilities on interest rate modelling," European Journal of Operational Research, Elsevier, vol. 263(2), pages 707-718.
    9. Fanelli, Viviana, 2016. "A defaultable HJM modelling of the Libor rate for pricing Basis Swaps after the credit crunch," European Journal of Operational Research, Elsevier, vol. 249(1), pages 238-244.
    10. Alessandro Andreoli & Luca Vincenzo Ballestra & Graziella Pacelli, 2018. "Pricing Credit Default Swaps Under Multifactor Reduced-Form Models: A Differential Quadrature Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 379-406, March.
    11. Changqing Luo & Mengzhen Li & Zisheng Ouyang, 2016. "An empirical study on the correlation structure of credit spreads based on the dynamic and pair copula functions," China Finance Review International, Emerald Group Publishing Limited, vol. 6(3), pages 284-303, August.
    12. Mitra, Sovan & Date, Paresh & Mamon, Rogemar & Wang, I-Chieh, 2013. "Pricing and risk management of interest rate swaps," European Journal of Operational Research, Elsevier, vol. 228(1), pages 102-111.
    13. Cheikh Mbaye & Fr'ed'eric Vrins, 2019. "An arbitrage-free conic martingale model with application to credit risk," Papers 1909.02474, arXiv.org.
    14. Wang, Chuan-Ju & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2014. "Evaluating corporate bonds with complicated liability structures and bond provisions," European Journal of Operational Research, Elsevier, vol. 237(2), pages 749-757.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. repec:wyi:journl:002109 is not listed on IDEAS
    3. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Viviana Fanelli & Silvana Musti, 2007. "Modelling Credit Spreads evolution using the Cox Process within the HJM framework," Quaderni DSEMS 27-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    6. Saa-Requejo, Jesus & Santa-Clara, Pedro, 1997. "Bond Pricing with Default Risk," University of California at Los Angeles, Anderson Graduate School of Management qt3w71g2ch, Anderson Graduate School of Management, UCLA.
    7. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, September.
    8. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    9. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    10. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Gatzert, Nadine & Martin, Michael, 2012. "Quantifying credit and market risk under Solvency II: Standard approach versus internal model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 649-666.
    13. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    14. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    15. Moraux, Franck, 2004. "Modeling the business risk of financially weakened firms: A new approach for corporate bond pricing," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 47-61.
    16. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    18. Viviana Fanelli & Silvana Musti, 2007. "Pricing of CDS Options with the HJM approach: a Numerical Implementation," Quaderni DSEMS 26-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    19. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    20. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    21. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.

    More about this item

    Keywords

    pricing; HJM model; Cox process; Monte Carlo method; CDS option;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.