IDEAS home Printed from https://ideas.repec.org/a/eme/cfripp/v6y2016i3p284-303.html
   My bibliography  Save this article

An empirical study on the correlation structure of credit spreads based on the dynamic and pair copula functions

Author

Listed:
  • Changqing Luo
  • Mengzhen Li
  • Zisheng Ouyang

Abstract

Purpose - – The purpose of this paper is to study the correlation structure of the credit spreads. Design/methodology/approach - – The minimal spanning tree is used to find the risk center node and the basic correlation structure of the credit spreads. The dynamic copula and pair copula models are applied to capture the dynamic and non-linear correlation structure. Findings - – The authors take the enterprise bond with trading data from January 2013 to December 2013 as the research sample. The empirical study of minimum spanning tree shows that the credit risk of corporate bonds forms a network structure with a center node. Meanwhile, the correlation between credit spreads shows dynamic characteristics. Under the framework of dynamic copula, the lower tail dependence is less than the upper tail dependence, thus, in economic boom period, the dynamic correlation is more significant than in recession period. The authors also find that the centrality of credit risk network is not significant according to the pair copula and Granger causality test. The empirical study shows that the goodness-of-fit of D vine is superior to Canonical vine, and the Granger causality test additionally proves that the center node has influence on few other nodes in the risk network, thus the center node captured by the minimum spanning tree is a weak center node, and this characteristic of credit risk network indicates that the risk network of credit spreads is generated mostly by the external shocks rather than the internal risk contagion. Originality/value - – This paper provides new ideas for investors and researchers to analyze the credit risk correlation or contagion.

Suggested Citation

  • Changqing Luo & Mengzhen Li & Zisheng Ouyang, 2016. "An empirical study on the correlation structure of credit spreads based on the dynamic and pair copula functions," China Finance Review International, Emerald Group Publishing Limited, vol. 6(3), pages 284-303, August.
  • Handle: RePEc:eme:cfripp:v:6:y:2016:i:3:p:284-303
    DOI: 10.1108/CFRI-08-2015-0118
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CFRI-08-2015-0118/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CFRI-08-2015-0118/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/CFRI-08-2015-0118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    2. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    3. Charles R. Hulten & Esra Bennathan & Sylaja Srinivasan, 2006. "Infrastructure, Externalities, and Economic Development: A Study of the Indian Manufacturing Industry," The World Bank Economic Review, World Bank, vol. 20(2), pages 291-308.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Finnerty, John D. & Miller, Cameron D. & Chen, Ren-Raw, 2013. "The impact of credit rating announcements on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2011-2030.
    7. Kim, Jong-Min & Jung, Yoon-Sung & Choi, Taeryon & Sungur, Engin A., 2011. "Partial correlation with copula modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1357-1366, March.
    8. Crook, Jonathan & Moreira, Fernando, 2011. "Checking for asymmetric default dependence in a credit card portfolio: A copula approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 728-742, September.
    9. Pagnoncelli, Bernardo K. & Cifuentes, Arturo, 2014. "Credit risk assessment of fixed income portfolios using explicit expressions," Finance Research Letters, Elsevier, vol. 11(3), pages 224-230.
    10. Alter, Adrian & Schüler, Yves S., 2012. "Credit spread interdependencies of European states and banks during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3444-3468.
    11. Liang, Xue & Wang, Guojing & Dong, Yinghui, 2013. "A Markov regime switching jump-diffusion model for the pricing of portfolio credit derivatives," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 373-381.
    12. Iscoe, Ian & Kreinin, Alexander & Mausser, Helmut & Romanko, Oleksandr, 2012. "Portfolio credit-risk optimization," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1604-1615.
    13. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    14. Corò, Filippo & Dufour, Alfonso & Varotto, Simone, 2013. "Credit and liquidity components of corporate CDS spreads," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5511-5525.
    15. Maalaoui Chun, Olfa & Dionne, Georges & François, Pascal, 2014. "Credit spread changes within switching regimes," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 41-55.
    16. Bada, Oualid & Kneip, Alois, 2014. "Parameter cascading for panel models with unknown number of unobserved factors: An application to the credit spread puzzle," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 95-115.
    17. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    18. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    19. Batten, Jonathan A. & Hogan, Warren P., 2003. "Time variation in the credit spreads on Australian Eurobonds," Pacific-Basin Finance Journal, Elsevier, vol. 11(1), pages 81-99, January.
    20. Guo, Liang, 2013. "Determinants of credit spreads: The role of ambiguity and information uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 279-297.
    21. Alizadeh, Amir H. & Gabrielsen, Alexandros, 2013. "Dynamics of credit spread moments of European corporate bond indexes," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3125-3144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yan & Feng, Yun, 2020. "Composite hedge and utility maximization for optimal futures hedging," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 15-32.
    2. Honghai Yu & Wencong Sun & Xiangting Ye & Libing Fang, 2019. "Measuring the increasing connectedness of Chinese assets with global assets: using a variance decompositions method," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1261-1290, March.
    3. Ji, Qiang & Liu, Bing-Yue & Nehler, Henrik & Uddin, Gazi Salah, 2018. "Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach," Energy Economics, Elsevier, vol. 76(C), pages 115-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    2. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    3. Javier Ojea Ferreiro, 2018. "Contagion spillovers between sovereign and financial European sector from a Delta CoVaR approach," Documentos de Trabajo del ICAE 2018-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    5. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    7. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    8. Reboredo, Juan C. & Ugolini, Andrea, 2016. "Quantile dependence of oil price movements and stock returns," Energy Economics, Elsevier, vol. 54(C), pages 33-49.
    9. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    10. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    11. Beatriz de la Flor & Javier Ojea-Ferreiro & Eva Ferreira, 2022. "The Hedging Cost of Forgetting the Exchange Rate," Documentos de Trabajo del ICAE 2022-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    12. Ferreiro Javier Ojea, 2019. "Structural change in the link between oil and the European stock market: implications for risk management," Dependence Modeling, De Gruyter, vol. 7(1), pages 53-125, January.
    13. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    14. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    15. Bartram, Söhnke M. & Wang, Yaw-Huei, 2015. "European financial market dependence: An industry analysis," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 146-163.
    16. Lee, Yongwoong & Yang, Kisung, 2019. "Modeling diversification and spillovers of loan portfolios' losses by LHP approximation and copula," International Review of Financial Analysis, Elsevier, vol. 66(C).
    17. Fantazzini , Dean, 2009. "Econometric Analysis of Financial Data in Risk Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 14(2), pages 100-127.
    18. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    19. Reboredo, Juan C. & Ugolini, Andrea & Ojea-Ferreiro, Javier, 2022. "Do green bonds de-risk investment in low-carbon stocks?," Economic Modelling, Elsevier, vol. 108(C).
    20. Reboredo, Juan C. & Ugolini, Andrea, 2016. "The impact of downward/upward oil price movements on metal prices," Resources Policy, Elsevier, vol. 49(C), pages 129-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:cfripp:v:6:y:2016:i:3:p:284-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.