IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Delta and Gamma hedging of mortality and interest rate risk

  • Elisa Luciano

    ()

  • Luca Regis

    ()

  • Elena Vigna

    ()

This paper studies the hedging problem of life insurance policies, when the mortality and interest rates are stochastic. We focus primar- ily on stochastic mortality. We represent death arrival as the rst jump time of a doubly stochastic process, i.e. a jump process with stochastic intensity. We propose a Delta-Gamma Hedging technique for mortal- ity risk in this context. The risk factor against which to hedge is the di erence between the actual mortality intensity in the future and its "forecast" today, the instantaneous forward intensity. We specialize the hedging technique rst to the case in which survival intensities are ane, then to Ornstein-Uhlenbeck and Feller processes, providing actuarial justi cations for this restriction. We show that, without im- posing no arbitrage, we can get equivalent probability measures under which the HJM condition for no arbitrage is satis ed. Last, we ex- tend our results to the presence of both interest rate and mortality risk, when the forward interest rate follows a constant-parameter Hull and White process. We provide a UK calibrated example of Delta and Gamma Hedging of both mortality and interest rate risk.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://servizi.sme.unito.it/icer_repec/RePEc/icr/wp2011/ICERwp01-11.pdf
Download Restriction: no

Paper provided by ICER - International Centre for Economic Research in its series ICER Working Papers - Applied Mathematics Series with number 01-2011.

as
in new window

Length: 33 pages
Date of creation: Jan 2011
Date of revision:
Handle: RePEc:icr:wpmath:01-2011
Contact details of provider: Postal: Corso Unione Sovietica, 218bis - 10134 Torino - Italy
Phone: +39 011 6706060
Fax: +39 011 6706060
Web page: http://www.esomas.unito.it/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
  2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  3. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
  4. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  5. Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2007. "Modelling stochastic mortality for dependent lives," Carlo Alberto Notebooks 43, Collegio Carlo Alberto.
  6. Alex Cowley & J. David Cummins, 2005. "Securitization of Life Insurance Assets and Liabilities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 193-226.
  7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  8. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  9. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  10. Blake, David & De Waegenaere, Anja & MacMinn, Richard & Nijman, Theo, 2010. "Longevity risk and capital markets: The 2008-2009 update," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 135-138, February.
  11. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
  12. Barbarin, Jérôme, 2008. "Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 41-55, August.
  13. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
  14. David Blake & Andrew Cairns & Kevin Dowd & Richard MacMinn, 2006. "Longevity Bonds: Financial Engineering, Valuation, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 647-672.
  15. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:01-2011. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.