IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v43y2023i2p273-293.html
   My bibliography  Save this article

A new option for mortality–interest rates

Author

Listed:
  • Tzuling Lin
  • Cary Chi‐Liang Tsai

Abstract

We propose a new type of mortality–interest option related to a new random variable, the force of mortality–interest denoted as μ * ${\mu }^{* }$, the addition of the force of mortality and the force of interest. We assume μ* ${\mu }^{* }$ moves approximately linearly, design the new mortality–interest option, and then derive closed‐form formulas for its expected values. We show that using the new mortality–interest options, an annuity provider and a life insurer can, respectively, hedge the longevity and mortality risks with interest rate risk; a financial intermediary selling the new options can benefit from natural hedges resulted from two‐side businesses with the annuity provider and life insurer.

Suggested Citation

  • Tzuling Lin & Cary Chi‐Liang Tsai, 2023. "A new option for mortality–interest rates," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 273-293, February.
  • Handle: RePEc:wly:jfutmk:v:43:y:2023:i:2:p:273-293
    DOI: 10.1002/fut.22390
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22390
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Tzuling Lin & Cary Chi‐liang Tsai, 2015. "A Simple Linear Regression Approach to Modeling and Forecasting Mortality Rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 543-559, November.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Menoncin, Francesco, 2008. "The role of longevity bonds in optimal portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 343-358, February.
    5. Jeffrey, Andrew, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(4), pages 619-642, December.
    6. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    7. Andrew Mark Jeffrey, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Yale School of Management Working Papers ysm46, Yale School of Management.
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    9. Enrico Biffis & David Blake & Lorenzo Pitotti & Ariel Sun, 2016. "The Cost of Counterparty Risk and Collateralization in Longevity Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(2), pages 387-419, June.
    10. Lin, Tzuling & Tsai, Cary Chi-Liang, 2016. "Hedging mortality/longevity risks of insurance portfolios for life insurer/annuity provider and financial intermediary," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 44-58.
    11. Schmeck, Maren Diane & Schmidli, Hanspeter, 2021. "Mortality options: The point of view of an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 98-115.
    12. Tsai, Cary Chi-Liang & Chung, San-Lin, 2013. "Actuarial applications of the linear hazard transform in mortality immunization," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 48-63.
    13. Tzuling Lin & Cary Chi-Liang Tsai, 2014. "Applications of Mortality Durations and Convexities in Natural Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(3), pages 417-442, July.
    14. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng & Wai‐Sum Chan, 2011. "On the calibration of mortality forward curves," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(10), pages 947-970, October.
    15. Cary Chi-Liang Tsai & Shuai Yang, 2015. "A Linear Regression Approach to Modeling Mortality Rates of Different Forms," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(1), pages 1-23, January.
    16. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    17. Lin, Tzuling & Tzeng, Larry Y., 2010. "An additive stochastic model of mortality rates: An application to longevity risk in reserve evaluation," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 423-435, April.
    18. Paul Dawson & Kevin Dowd & Andrew J. G. Cairns & David Blake, 2009. "Options on normal underlyings with an application to the pricing of survivor swaptions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(8), pages 757-774, August.
    19. Lin, Tzuling & Tsai, Cary Chi-liang, 2020. "Natural Hedges With Immunization Strategies Of Mortality And Interest Rates," ASTIN Bulletin, Cambridge University Press, vol. 50(1), pages 155-185, January.
    20. Amy Finkelstein & James Poterba, 2002. "Selection Effects in the United Kingdom Individual Annuities Market," Economic Journal, Royal Economic Society, vol. 112(476), pages 28-50, January.
    21. Lin, Tzuling & Tsai, Cary Chi-Liang, 2013. "On the mortality/longevity risk hedging with mortality immunization," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 580-596.
    22. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2015. "Stochastic string models with continuous semimartingales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 229-246.
    4. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    5. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    6. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    7. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    9. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    10. Elisa Luciano & Luca Regis & Elena Vigna, 2011. "Delta and Gamma hedging of mortality and interest rate risk," ICER Working Papers - Applied Mathematics Series 01-2011, ICER - International Centre for Economic Research.
    11. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    12. Antonio Mannolini & Carlo Mari & Roberto Renò, 2008. "Pricing caps and floors with the extended CIR model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 13(4), pages 386-400.
    13. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    14. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. repec:uts:finphd:40 is not listed on IDEAS
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    18. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    19. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    20. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    21. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:43:y:2023:i:2:p:273-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.