IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v235y2025icp145-159.html
   My bibliography  Save this article

A lattice-based approach for life insurance pricing in a stochastic correlation framework

Author

Listed:
  • Costabile, Massimo
  • Massabó, Ivar
  • Russo, Emilio
  • Staino, Alessandro
  • Mamon, Rogemar
  • Zhao, Yixing

Abstract

We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).

Suggested Citation

  • Costabile, Massimo & Massabó, Ivar & Russo, Emilio & Staino, Alessandro & Mamon, Rogemar & Zhao, Yixing, 2025. "A lattice-based approach for life insurance pricing in a stochastic correlation framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 235(C), pages 145-159.
  • Handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:145-159
    DOI: 10.1016/j.matcom.2025.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425001120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, Jan & Kukush, Alexander & Luciano, Elisa & Schoutens, Wim & Stassen, Ben, 2013. "On the (in-)dependence between financial and actuarial risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 522-531.
    2. Emilio Russo & Alessandro Staino, 2018. "A Lattice-Based Model For Evaluating Bonds And Interest-Sensitive Claims Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-18, June.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Da Fonseca, José, 2024. "Pricing guaranteed annuity options in a linear-rational Wishart mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 122-131.
    5. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    6. Devolder, Pierre & Russo, Emilio & Staino, Alessandro, 2024. "Fair valuations of insurance policies under multiple risk factors: A flexible lattice approach," LIDAM Reprints ISBA 2024010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Long Teng & Matthias Ehrhardt & Michael Günther, 2016. "On The Heston Model With Stochastic Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-25, September.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    10. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    11. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    12. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    13. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    14. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    15. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    16. Devolder, Pierre & Russo, Emilio & Staino, Alessandro, 2024. "Fair valuations of insurance policies under multiple risk factors: A flexible lattice approach," ASTIN Bulletin, Cambridge University Press, vol. 54(2), pages 385-409, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Luciano & Luca Regis & Elena Vigna, 2011. "Delta and Gamma hedging of mortality and interest rate risk," ICER Working Papers - Applied Mathematics Series 01-2011, ICER - International Centre for Economic Research.
    2. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    3. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    4. Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
    5. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    6. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    7. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    8. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    9. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    10. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    11. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    12. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    13. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    14. Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.
    15. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    16. Leunglung Chan & Eckhard Platen, 2016. "Pricing of long dated equity-linked life insurance contracts," Published Paper Series 2016-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    17. Jevtić, Petar & Regis, Luca, 2015. "Assessing the solvency of insurance portfolios via a continuous-time cohort model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 36-47.
    18. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    19. Gambaro, Anna Maria & Casalini, Riccardo & Fusai, Gianluca & Ghilarducci, Alessandro, 2018. "Quantitative assessment of common practice procedures in the fair evaluation of embedded options in insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 117-129.
    20. Stefan Tappe & Stefan Weber, 2014. "Stochastic mortality models: an infinite-dimensional approach," Finance and Stochastics, Springer, vol. 18(1), pages 209-248, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:145-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.