IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03675291.html
   My bibliography  Save this paper

Handling model risk with XVAs

Author

Listed:
  • Cyril Bénézet

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise)

  • Stéphane Crépey

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité, UPCité - Université Paris Cité)

Abstract

In this paper we revisit Burnett (2021) & Burnett and Williams (2021)'s notion of hedging valuation adjustment (HVA), originally intended to deal with dynamic hedging frictions such as transaction costs, in the direction of model risk. The corresponding HVA reconciles a global fair valuation model with the local models used by the different desks of the bank. Model risk and dynamic hedging frictions indeed deserve a reserve, but a risk-adjusted one, so not only an HVA, but also a contribution to the KVA of the bank. The orders of magnitude of the effects involved suggest that local models should not so much be managed via reserves, as excluded altogether.

Suggested Citation

  • Cyril Bénézet & Stéphane Crépey, 2024. "Handling model risk with XVAs," Post-Print hal-03675291, HAL.
  • Handle: RePEc:hal:journl:hal-03675291
    DOI: 10.3934/fmf.2024016
    Note: View the original document on HAL open archive server: https://hal.science/hal-03675291v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03675291v3/document
    Download Restriction: no

    File URL: https://libkey.io/10.3934/fmf.2024016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lorenzo Silotto & Marco Scaringi & Marco Bianchetti, 2021. "Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask," Papers 2107.10377, arXiv.org, revised Mar 2025.
    2. Daniel Bartl & Samuel Drapeau & Jan Obloj & Johannes Wiesel, 2020. "Sensitivity analysis of Wasserstein distributionally robust optimization problems," Papers 2006.12022, arXiv.org, revised Nov 2021.
    3. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2021. "A Darwinian Theory of Model Risk," Post-Print hal-03910130, HAL.
    4. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    5. Andrea Pallavicini & Daniele Perini & Damiano Brigo, 2011. "Funding Valuation Adjustment: a consistent framework including CVA, DVA, collateral,netting rules and re-hypothecation," Papers 1112.1521, arXiv.org, revised Dec 2011.
    6. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    7. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2023. "Quantitative reverse stress testing, bottom up," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 863-875, May.
    8. Philippe Artzner & Karl‐Theodor Eisele & Thorsten Schmidt, 2024. "Insurance–finance arbitrage," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 739-773, July.
    9. Nils Detering & Natalie Packham, 2016. "Model risk of contingent claims," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1357-1374, September.
    10. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    11. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    12. D Barrera & S Crépey & E Gobet & Hoang-Dung Nguyen & B Saadeddine, 2024. "Statistical Learning of Value-at-Risk and Expected Shortfall," Working Papers hal-03775901, HAL.
    13. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    14. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyril B'en'ezet & St'ephane Cr'epey, 2022. "Handling model risk with XVAs," Papers 2205.11834, arXiv.org, revised Aug 2024.
    2. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524.
    3. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    4. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    5. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    6. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    7. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    8. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    11. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    12. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    13. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    14. Yan Yan & Zhewen Liao & Xiaosong Chen, 2018. "Fixed-income securities: bibliometric review with network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1615-1640, September.
    15. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
    16. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    17. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    18. Junichi Imai, 2022. "A Numerical Method for Hedging Bermudan Options under Model Uncertainty," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 893-916, June.
    19. Mark Cummins & Fabian Gogolin & Fearghal Kearney & Greg Kiely & Bernard Murphy, 2023. "Practice-relevant model validation: distributional parameter risk analysis in financial model risk management," Annals of Operations Research, Springer, vol. 330(1), pages 431-455, November.
    20. Cyril Bénézet & Stéphane Crépey & Dounia Essaket, 2025. "Hedging Valuation Adjustment for Callable Claims," Working Papers hal-04057045, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03675291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.