IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/724.html
   My bibliography  Save this paper

A parametric approach to the estimation of convex risk functionals based on Wasserstein distance

Author

Listed:
  • Nendel, Max

    (Center for Mathematical Economics, Bielefeld University)

  • Sgarabottolo, Alessandro

    (Center for Mathematical Economics, Bielefeld University)

Abstract

In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We study convex risk functionals that incorporate a safety margin with respect to nonparametric uncertainty by penalizing perturbations from a given baseline model using Wasserstein distance. We investigate to which extent this form of probabilistic imprecision can be approximated by restricting to a parametric family of models. The particular form of the parametrization allows to develop numerical methods based on neural networks, which give both the value of the risk functional and the worst-case perturbation of the reference measure. Moreover, we consider additional constraints on the perturbations, namely, mean and martingale constraints. We show that, in both cases, under suitable conditions on the loss function, it is still possible to estimate the risk functional by passing to a parametric family of perturbed models, which again allows for numerical approximations via neural networks.

Suggested Citation

  • Nendel, Max & Sgarabottolo, Alessandro, 2025. "A parametric approach to the estimation of convex risk functionals based on Wasserstein distance," Center for Mathematical Economics Working Papers 724, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:724
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/3005290/3005291
    File Function: First Version, 2024
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.