IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Model-independent bounds for option prices—a mass transport approach

  • Mathias Beiglböck

    ()

  • Pierre Henry-Labordère

    ()

  • Friedrich Penkner

    ()

Registered author(s):

    In this paper we investigate model-independent bounds for exotic options written on a risky asset using infinite-dimensional linear programming methods. Based on arguments from the theory of Monge–Kantorovich mass transport, we establish a dual version of the problem that has a natural financial interpretation in terms of semi-static hedging. In particular we prove that there is no duality gap. Copyright Springer-Verlag Berlin Heidelberg 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s00780-013-0205-8
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Finance and Stochastics.

    Volume (Year): 17 (2013)
    Issue (Month): 3 (July)
    Pages: 477-501

    as
    in new window

    Handle: RePEc:spr:finsto:v:17:y:2013:i:3:p:477-501
    Contact details of provider: Web page: http://www.springerlink.com/content/101164/

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Chen, X. & Deelstra, G. & Dhaene, J. & Vanmaele, M., 2008. "Static super-replicating strategies for a class of exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1067-1085, June.
    2. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    3. Peter Laurence & Tai-Ho Wang, 2005. "Sharp Upper and Lower Bounds for Basket Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 253-282.
    4. Hobson, David & Laurence, Peter & Wang, Tai-Ho, 2005. "Static-arbitrage optimal subreplicating strategies for basket options," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 553-572, December.
    5. David Hobson & Peter Laurence & Tai-Ho Wang, 2005. "Static-arbitrage upper bounds for the prices of basket options," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 329-342.
    6. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    7. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    8. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    9. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    10. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:17:y:2013:i:3:p:477-501. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.