IDEAS home Printed from
   My bibliography  Save this article

Sharp Upper and Lower Bounds for Basket Options


  • Peter Laurence
  • Tai-Ho Wang


Given a basket option on two or more assets in a one-period static hedging setting, the paper considers the problem of maximizing and minimizing the basket option price subject to the constraints of known option prices on the component stocks and consistency with forward prices and treat it as an optimization problem. Sharp upper bounds are derived for the general n-asset case and sharp lower bounds for the two-asset case, both in closed forms, of the price of the basket option. In the case n = 2 examples are given of discrete distributions attaining the bounds. Hedge ratios are also derived for optimal sub and super replicating portfolios consisting of the options on the individual underlying stocks and the stocks themselves.

Suggested Citation

  • Peter Laurence & Tai-Ho Wang, 2005. "Sharp Upper and Lower Bounds for Basket Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 253-282.
  • Handle: RePEc:taf:apmtfi:v:12:y:2005:i:3:p:253-282
    DOI: 10.1080/1350486042000325179

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Laurence, Peter & Wang, Tai-Ho, 2009. "Sharp distribution free lower bounds for spread options and the corresponding optimal subreplicating portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 35-47, February.
    2. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Working Papers hal-00790001, HAL.
    3. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    4. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    5. repec:spr:joptap:v:144:y:2010:i:1:d:10.1007_s10957-009-9605-5 is not listed on IDEAS
    6. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    7. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    8. Arash Fahim & Yu-Jui Huang, 2014. "Model-independent Superhedging under Portfolio Constraints," Papers 1402.2599,, revised Jun 2015.
    9. Peña, Javier & Vera, Juan C. & Zuluaga, Luis F., 2012. "Computing arbitrage upper bounds on basket options in the presence of bid–ask spreads," European Journal of Operational Research, Elsevier, vol. 222(2), pages 369-376.
    10. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    11. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756,, revised Mar 2014.
    12. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Papers 1302.4854,, revised Apr 2013.
    13. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    14. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.

    More about this item


    Basket option; duality; sharp bound;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:12:y:2005:i:3:p:253-282. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.