IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.10377.html
   My bibliography  Save this paper

Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask

Author

Listed:
  • Lorenzo Silotto
  • Marco Scaringi
  • Marco Bianchetti

Abstract

Valuation adjustments, collectively named XVA, play an important role in modern derivatives pricing. XVA are an exotic pricing component since they require the forward simulation of multiple risk factors in order to compute the portfolio exposure including collateral, leading to a significant model risk and computational effort, even in case of plain vanilla trades. This work analyses the most critical model risk factors, meant as those to which XVA are most sensitive, finding an acceptable compromise between accuracy and performance. This task has been conducted in a complete context including a market standard multi-curve G2++ model calibrated on real market data, both Variation Margin and ISDA-SIMM dynamic Initial Margin, different collateralization schemes, and the most common linear and non-linear interest rates derivatives. Moreover, we considered an alternative analytical approach for XVA in case of uncollateralized Swaps. We show that a crucial element is the construction of a parsimonious time grid capable of capturing all periodical spikes arising in collateralized exposure during the Margin Period of Risk. To this end, we propose a workaround to efficiently capture all spikes. Moreover, we show that there exists a parameterization which allows to obtain accurate results in a reasonable time, which is a very important feature for practical applications. In order to address the valuation uncertainty linked to the existence of a range of different parameterizations, we calculate the Model Risk AVA (Additional Valuation Adjustment) for XVA according to the provisions of the EU Prudent Valuation regulation. Finally, this work can serve as an handbook containing step-by-step instructions for the implementation of a complete, realistic and robust modelling framework of collateralized exposure and XVA.

Suggested Citation

  • Lorenzo Silotto & Marco Scaringi & Marco Bianchetti, 2021. "Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask," Papers 2107.10377, arXiv.org.
  • Handle: RePEc:arx:papers:2107.10377
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.10377
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    2. Damiano Brigo & Andrea Pallavicini & Vasileios Papatheodorou, 2011. "Arbitrage-Free Valuation Of Bilateral Counterparty Risk For Interest-Rate Products: Impact Of Volatilities And Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 773-802.
    3. Damiano Brigo & Agostino Capponi & Andrea Pallavicini, 2014. "Arbitrage-Free Bilateral Counterparty Risk Valuation Under Collateralization And Application To Credit Default Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 125-146, January.
    4. Andrea Pallavicini & Daniele Perini & Damiano Brigo, 2012. "Funding, Collateral and Hedging: uncovering the mechanics and the subtleties of funding valuation adjustments," Papers 1210.3811, arXiv.org, revised Dec 2012.
    5. Caspers, Peter & Giltinan, Paul & Lichters, Roland & Nowaczyk, Nikolai, 2017. "Forecasting initial margin requirements: A model evaluation," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 10(4), pages 365-394, October.
    6. Andrew Green & Chris Kenyon, 2014. "MVA: Initial Margin Valuation Adjustment by Replication and Regression," Papers 1405.0508, arXiv.org, revised Jan 2015.
    7. Henrard, Marc, 2007. "The irony in the derivatives discounting," MPRA Paper 3115, University Library of Munich, Germany.
    8. Andrea Maran & Andrea Pallavicini & Stefano Scoleri, 2021. "Chebyshev Greeks: Smoothing Gamma without Bias," Papers 2106.12431, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Albanese & Cyril B'en'ezet & St'ephane Cr'epey, 2022. "Hedging Valuation Adjustment and Model Risk," Papers 2205.11834, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damiano Brigo & Andrea Pallavicini, 2013. "CCPs, Central Clearing, CSA, Credit Collateral and Funding Costs Valuation FAQ: Re-hypothecation, CVA, Closeout, Netting, WWR, Gap-Risk, Initial and Variation Margins, Multiple Discount Curves, FVA?," Papers 1312.0128, arXiv.org, revised Dec 2013.
    2. Brigo, Damiano & Francischello, Marco & Pallavicini, Andrea, 2019. "Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and disentanglement," European Journal of Operational Research, Elsevier, vol. 274(2), pages 788-805.
    3. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2016. "Arbitrage-Free XVA," Papers 1608.02690, arXiv.org.
    4. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    6. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    7. Enrico Biffis & David Blake & Lorenzo Pitotti & Ariel Sun, 2016. "The Cost of Counterparty Risk and Collateralization in Longevity Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(2), pages 387-419, June.
    8. Damiano Brigo & Qing Liu & Andrea Pallavicini & David Sloth, 2014. "Nonlinear Valuation under Collateral, Credit Risk and Funding Costs: A Numerical Case Study Extending Black-Scholes," Papers 1404.7314, arXiv.org.
    9. Raymond Brummelhuis & Zhongmin Luo, 2018. "Arbitrage Opportunities in CDS Term Structure: Theory and Implications for OTC Derivatives," Papers 1811.08038, arXiv.org, revised Dec 2018.
    10. Alessandro Gnoatto & Nicole Seiffert, 2020. "Cross Currency Valuation and Hedging in the Multiple Curve Framework," Working Papers 03/2020, University of Verona, Department of Economics.
    11. Monique Jeanblanc & Libo Li & Shiqi Song, 2018. "An enlargement of filtration formula with applications to multiple non-ordered default times," Finance and Stochastics, Springer, vol. 22(1), pages 205-240, January.
    12. Francesca Biagini & Alessandro Gnoatto & Immacolata Oliva, 2019. "Pricing of counterparty risk and funding with CSA discounting, portfolio effects and initial margin," Working Papers 04/2019, University of Verona, Department of Economics.
    13. Lucia Cipolina Kun & Simone Caenazzo & Ksenia Ponomareva, 2020. "Mathematical Foundations of Regression Methods for the approximation of the Forward Initial Margin," Papers 2002.04563, arXiv.org, revised Sep 2022.
    14. Andrew Green & Chris Kenyon, 2014. "MVA: Initial Margin Valuation Adjustment by Replication and Regression," Papers 1405.0508, arXiv.org, revised Jan 2015.
    15. P. Amster & A. P. Mogni, 2018. "Adapting the CVA model to Leland's framework," Papers 1802.04837, arXiv.org.
    16. van der Zwaard, Thomas & Grzelak, Lech A. & Oosterlee, Cornelis W., 2021. "A computational approach to hedging Credit Valuation Adjustment in a jump-diffusion setting," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    17. Jean-Paul Laurent & Philippe Amzelek & Joe Bonnaud, 2014. "An overview of the valuation of collateralized derivative contracts," Review of Derivatives Research, Springer, vol. 17(3), pages 261-286, October.
    18. Lixin Wu & Dawei Zhang, 2020. "xVA: DEFINITION, EVALUATION AND RISK MANAGEMENT," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-24, February.
    19. T. van der Zwaard & L. A. Grzelak & C. W. Oosterlee, 2022. "Relevance of Wrong-Way Risk in Funding Valuation Adjustments," Papers 2204.02680, arXiv.org, revised Jun 2022.
    20. Andrea Pallavicini & Damiano Brigo, 2013. "Interest-Rate Modelling in Collateralized Markets: Multiple curves, credit-liquidity effects, CCPs," Papers 1304.1397, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.10377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.