IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.12431.html
   My bibliography  Save this paper

Chebyshev Greeks: Smoothing Gamma without Bias

Author

Listed:
  • Andrea Maran
  • Andrea Pallavicini
  • Stefano Scoleri

Abstract

The computation of Greeks is a fundamental task for risk managing of financial instruments. The standard approach to their numerical evaluation is via finite differences. Most exotic derivatives are priced via Monte Carlo simulation: in these cases, it is hard to find a fast and accurate approximation of Greeks, mainly because of the need of a tradeoff between bias and variance. Recent improvements in Greeks computation, such as Adjoint Algorithmic Differentiation, are unfortunately uneffective on second order Greeks (such as Gamma), which are plagued by the most significant instabilities, so that a viable alternative to standard finite differences is still lacking. We apply Chebyshev interpolation techniques to the computation of spot Greeks, showing how to improve the stability of finite difference Greeks of arbitrary order, in a simple and general way. The increased performance of the proposed technique is analyzed for a number of real payoffs commonly traded by financial institutions.

Suggested Citation

  • Andrea Maran & Andrea Pallavicini & Stefano Scoleri, 2021. "Chebyshev Greeks: Smoothing Gamma without Bias," Papers 2106.12431, arXiv.org.
  • Handle: RePEc:arx:papers:2106.12431
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.12431
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariano Zeron-Medina Laris & Ignacio Ruiz, 2019. "Denting the FRTB IMA computational challenge via Orthogonal Chebyshev Sliding Technique," Papers 1911.10948, arXiv.org, revised Dec 2020.
    2. Mariano Zeron Medina Laris & Ignacio Ruiz, 2018. "Chebyshev Methods for Ultra-efficient Risk Calculations," Papers 1805.00898, arXiv.org.
    3. Mariano Zeron & Ignacio Ruiz, 2020. "Tensoring volatility calibration," Papers 2012.07440, arXiv.org, revised Dec 2020.
    4. Marco Bianchetti & Sergei Kucherenko & Stefano Scoleri, 2015. "Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis," Papers 1504.02896, arXiv.org.
    5. Maximilian Gaß & Kathrin Glau & Mirco Mahlstedt & Maximilian Mair, 2018. "Chebyshev interpolation for parametric option pricing," Finance and Stochastics, Springer, vol. 22(3), pages 701-731, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Silotto & Marco Scaringi & Marco Bianchetti, 2021. "Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask," Papers 2107.10377, arXiv.org.
    2. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzelak, Lech A., 2022. "Sparse grid method for highly efficient computation of exposures for xVA," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Mariano Zeron & Ignacio Ruiz, 2020. "Tensoring volatility calibration," Papers 2012.07440, arXiv.org, revised Dec 2020.
    3. Mariano Zeron & Ignacio Ruiz, 2020. "Dynamic sensitivities and Initial Margin via Chebyshev Tensors," Papers 2011.04544, arXiv.org.
    4. Mariano Zeron-Medina Laris & Ignacio Ruiz, 2019. "Denting the FRTB IMA computational challenge via Orthogonal Chebyshev Sliding Technique," Papers 1911.10948, arXiv.org, revised Dec 2020.
    5. Lech A. Grzelak, 2021. "Sparse Grid Method for Highly Efficient Computation of Exposures for xVA," Papers 2104.14319, arXiv.org, revised May 2022.
    6. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    7. J. Hok & S. Kucherenko, 2022. "The importance of being scrambled: supercharged Quasi Monte Carlo," Papers 2210.16548, arXiv.org, revised Oct 2023.
    8. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    9. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
    10. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    11. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Fast Calculation of Credit Exposures for Barrier and Bermudan options using Chebyshev interpolation," Papers 1905.00238, arXiv.org.
    12. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    13. Darrold Cordes & Shahram Latifi & Gregory M. Morrison, 2022. "Systematic literature review of the performance characteristics of Chebyshev polynomials in machine learning applications for economic forecasting in low-income communities in sub-Saharan Africa," SN Business & Economics, Springer, vol. 2(12), pages 1-33, December.
    14. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    15. Paul Bilokon & Sergei Kucherenko & Casey Williams, 2022. "Quasi-Monte Carlo methods for calculating derivatives sensitivities on the GPU," Papers 2209.11337, arXiv.org.
    16. M. Khasi & J. Rashidinia, 2024. "A Bilinear Pseudo-spectral Method for Solving Two-asset European and American Pricing Options," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 893-918, February.
    17. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    18. Tat Lung Chan & Nicholas Hale, 2018. "Hedging and Pricing European-type, Early-Exercise and Discrete Barrier Options using Algorithm for the Convolution of Legendre Series," Papers 1811.09257, arXiv.org, revised May 2019.
    19. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    20. Damien Ackerer & Damir Filipović, 2020. "Linear credit risk models," Finance and Stochastics, Springer, vol. 24(1), pages 169-214, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.12431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.