IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.11576.html
   My bibliography  Save this paper

Effective dimensionality reduction for Greeks computation using Randomized QMC

Author

Listed:
  • Luca Albieri
  • Sergei Kucherenko
  • Stefano Scoleri
  • Marco Bianchetti

Abstract

Global sensitivity analysis is employed to evaluate the effective dimension reduction achieved through Chebyshev interpolation and the conditional pathwise method for Greek estimation of discretely monitored barrier options and arithmetic average Asian options. We compare results from finite difference and Monte Carlo methods with those obtained by using randomized Quasi Monte Carlo combined with Brownian bridge discretization. Additionally, we investigate the benefits of incorporating importance sampling with either the finite difference or Chebyshev interpolation methods. Our findings demonstrate that the reduced effective dimensionality identified through global sensitivity analysis explains the performance advantages of one approach over another. Specifically, the increased smoothness provided by Chebyshev or conditional pathwise methods enhances the convergence rate of randomized Quasi Monte Carlo integration, leading to the significant increase of accuracy and reduced computational costs.

Suggested Citation

  • Luca Albieri & Sergei Kucherenko & Stefano Scoleri & Marco Bianchetti, 2025. "Effective dimensionality reduction for Greeks computation using Randomized QMC," Papers 2504.11576, arXiv.org.
  • Handle: RePEc:arx:papers:2504.11576
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.11576
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaojun Zhang & Xiaoqun Wang, 2020. "Quasi-Monte Carlo-based conditional pathwise method for option Greeks," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 49-67, January.
    2. Andrea Maran & Andrea Pallavicini & Stefano Scoleri, 2021. "Chebyshev Greeks: Smoothing Gamma without Bias," Papers 2106.12431, arXiv.org.
    3. Marco Bianchetti & Sergei Kucherenko & Stefano Scoleri, 2015. "Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis," Papers 1504.02896, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Hok & S. Kucherenko, 2022. "The importance of being scrambled: supercharged Quasi Monte Carlo," Papers 2210.16548, arXiv.org, revised Oct 2023.
    2. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
    3. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    4. Lorenzo Silotto & Marco Scaringi & Marco Bianchetti, 2021. "Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask," Papers 2107.10377, arXiv.org, revised Mar 2025.
    5. Chao Yu & Xiaoqun Wang, 2023. "Quasi-Monte Carlo-Based Conditional Malliavin Method for Continuous-Time Asian Option Greeks," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 325-360, June.
    6. Paul Bilokon & Sergei Kucherenko & Casey Williams, 2022. "Quasi-Monte Carlo methods for calculating derivatives sensitivities on the GPU," Papers 2209.11337, arXiv.org.
    7. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    8. Anil Sharma & Freeman Chen & Jaesun Noh & Julio DeJesus & Mario Schlener, 2024. "Hedging and Pricing Structured Products Featuring Multiple Underlying Assets," Papers 2411.01121, arXiv.org.
    9. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    10. Zhijian He & Xiaoqun Wang, 2021. "An Integrated Quasi-Monte Carlo Method for Handling High Dimensional Problems with Discontinuities in Financial Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 693-718, February.
    11. Andrea Maran & Andrea Pallavicini & Stefano Scoleri, 2021. "Chebyshev Greeks: Smoothing Gamma without Bias," Papers 2106.12431, arXiv.org.
    12. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    13. Jan Posp'iv{s}il & Tom'av{s} Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Papers 1912.06709, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.11576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.