IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.07440.html
   My bibliography  Save this paper

Tensoring volatility calibration

Author

Listed:
  • Mariano Zeron
  • Ignacio Ruiz

Abstract

Inspired by a series of remarkable papers in recent years that use Deep Neural Nets to substantially speed up the calibration of pricing models, we investigate the use of Chebyshev Tensors instead of Deep Neural Nets. Given that Chebyshev Tensors can be, under certain circumstances, more efficient than Deep Neural Nets at exploring the input space of the function to be approximated, due to their exponential convergence, the problem of calibration of pricing models seems, a priori, a good case where Chebyshev Tensors can excel. In this piece of research, we built Chebyshev Tensors, either directly or with the help of the Tensor Extension Algorithms, to tackle the computational bottleneck associated with the calibration of the rough Bergomi volatility model. Results are encouraging as the accuracy of model calibration via Chebyshev Tensors is similar to that when using Deep Neural Nets, but with building efforts that range between 5 and 100 times more efficient in the experiments run. Our tests indicate that when using Chebyshev Tensors, the calibration of the rough Bergomi volatility model is around 40,000 times more efficient than if calibrated via brute-force (using the pricing function).

Suggested Citation

  • Mariano Zeron & Ignacio Ruiz, 2020. "Tensoring volatility calibration," Papers 2012.07440, arXiv.org, revised Dec 2020.
  • Handle: RePEc:arx:papers:2012.07440
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.07440
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Gaß & Kathrin Glau & Mirco Mahlstedt & Maximilian Mair, 2018. "Chebyshev interpolation for parametric option pricing," Finance and Stochastics, Springer, vol. 22(3), pages 701-731, July.
    2. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    6. Mariano Zeron-Medina Laris & Ignacio Ruiz, 2019. "Denting the FRTB IMA computational challenge via Orthogonal Chebyshev Sliding Technique," Papers 1911.10948, arXiv.org, revised Dec 2020.
    7. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Maran & Andrea Pallavicini & Stefano Scoleri, 2021. "Chebyshev Greeks: Smoothing Gamma without Bias," Papers 2106.12431, arXiv.org.
    2. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    3. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    4. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    5. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    8. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    9. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    10. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    11. Matthieu Garcin & Martino Grasselli, 2022. "Long versus short time scales: the rough dilemma and beyond," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 257-278, June.
    12. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    13. Elisa Al`os & David Garc'ia-Lorite & Aitor Muguruza, 2018. "On smile properties of volatility derivatives and exotic products: understanding the VIX skew," Papers 1808.03610, arXiv.org.
    14. Marc Lagunas-Merino & Salvador Ortiz-Latorre, 2020. "A decomposition formula for fractional Heston jump diffusion models," Papers 2007.14328, arXiv.org.
    15. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    16. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    17. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.
    18. Antoine Jacquier & Fangwei Shi, 2018. "Small-time moderate deviations for the randomised Heston model," Papers 1808.03548, arXiv.org.
    19. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.07440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.