IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.0515.html
   My bibliography  Save this paper

KVA: Capital Valuation Adjustment

Author

Listed:
  • Andrew Green
  • Chris Kenyon

Abstract

Credit (CVA), Debit (DVA) and Funding Valuation Adjustments (FVA) are now familiar valuation adjustments made to the value of a portfolio of derivatives to account for credit risks and funding costs. However, recent changes in the regulatory regime and the increases in regulatory capital requirements has led many banks to include the cost of capital in derivative pricing. This paper formalises the addition of cost of capital by extending the Burgard-Kjaer (2013) semi-replication approach to CVA and FVA to include an addition capital term, Capital Valuation Adjustment (KVA, i.e. Kapital Valuation Adjustment to distinguish from CVA.) The utilization of the capital for funding purposes is also considered. The use of the semi-replication approach means that the flexibility around the treatment of self-default is carried over into this analysis. The paper further considers the practical calculation of KVA with reference to the Basel II (BCBS-128) and Basel III (BCBS-189) capital regimes and their implementation via CRD IV. The paper also assesses how KVA may be hedged, given that any hedging transactions themselves lead to regulatory capital requirements and hence capital costs. Finally a number of numerical examples are presented to gauge the cost impact of KVA on vanilla derivative products.

Suggested Citation

  • Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
  • Handle: RePEc:arx:papers:1405.0515
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.0515
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Green & Chris Kenyon, 2014. "MVA: Initial Margin Valuation Adjustment by Replication and Regression," Papers 1405.0508, arXiv.org, revised Jan 2015.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    2. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    3. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    4. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    5. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    6. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    7. Gkousis, Spiros & Welkenhuysen, Kris & Harcouët-Menou, Virginie & Pogacnik, Justin & Laenen, Ben & Compernolle, Tine, 2024. "Integrated geo-techno-economic and real options analysis of the decision to invest in a medium enthalpy deep geothermal heating plant. A case study in Northern Belgium," Energy Economics, Elsevier, vol. 134(C).
    8. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    9. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    10. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    11. Xuemei Gao & Dongya Deng & Yue Shan, 2014. "Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-6, April.
    12. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    13. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    14. Jing Wu & Lijie Su & Gongshu Wang & Yang Yang, 2024. "Approximated Dynamic Programming for Production and Inventory Planning Problem in Cold Rolling Process of Steel Production," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    15. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.
    16. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    17. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    18. Chi H. Truong, 2014. "A Two Factor Model for Water Prices and Its Implications for Evaluating Real Options and Other Water Price Derivatives," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 23-45, March.
    19. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    20. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.0515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.