IDEAS home Printed from
   My bibliography  Save this paper

Robustness of Delta hedging in a jump-diffusion model


  • Frank Bosserhoff
  • Mitja Stadje


Suppose an investor aims at Delta hedging a European contingent claim $h(S(T))$ in a jump-diffusion model, but incorrectly specifies the stock price's volatility and jump sensitivity, so that any hedging strategy is calculated under a misspecified model. When does the erroneously computed strategy super-replicate the true claim in an appropriate sense? If the misspecified volatility and jump sensitivity dominate the true ones, we show that following the misspecified Delta strategy does super-replicate $h(S(T))$ in expectation among a wide collection of models. We also show that if a robust pricing operator with a whole class of models is used, the corresponding hedge is dominating the contingent claim under each model in expectation. Our results rely on proving stochastic flow properties of the jump-diffusion and the convexity of the value function. In the pure Poisson case, we establish that an overestimation of the jump sensitivity results in an almost sure one-sided hedge. Moreover, in general the misspecified price of the option dominates the true one if the volatility and the jump sensitivity are overestimated.

Suggested Citation

  • Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta hedging in a jump-diffusion model," Papers 1910.08946,
  • Handle: RePEc:arx:papers:1910.08946

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Anis Matoussi & Dylan Possamaï & Chao Zhou, 2015. "Robust Utility Maximization In Nondominated Models With 2bsde: The Uncertain Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 258-287, April.
    2. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    3. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    4. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2015. "Hedging with Small Uncertainty Aversion," Swiss Finance Institute Research Paper Series 15-19, Swiss Finance Institute, revised Apr 2017.
    5. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486,, revised Apr 2013.
    6. Jeremy Staum, 2004. "Fundamental Theorems of Asset Pricing for Good Deal Bounds," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 141-161, April.
    7. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    8. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    9. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    10. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. H. Föllmer & Y.M. Kabanov, 1997. "Optional decomposition and Lagrange multipliers," Finance and Stochastics, Springer, vol. 2(1), pages 69-81.
    13. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    14. David Hobson, 2010. "Comparison results for stochastic volatility models via coupling," Finance and Stochastics, Springer, vol. 14(1), pages 129-152, January.
    15. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    16. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    17. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    18. Kromer, E. & Overbeck, L. & Röder, J.A.L., 2015. "Feynman–Kac for functional jump diffusions with an application to Credit Value Adjustment," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 120-129.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.08946. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.