IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1519.html
   My bibliography  Save this paper

Hedging with Small Uncertainty Aversion

Author

Listed:
  • Sebastian Herrmann

    (University of Michigan at Ann Arbor)

  • Johannes Muhle-Karbe

    (Imperial College London - Department of Mathematics)

  • Frank Thomas Seifried

    (University of Trier)

Abstract

We study the pricing and hedging of derivative securities with uncertainty about the volatility of the underlying asset. Rather than taking all models from a prespecified class equally seriously, we penalise less plausible ones based on their "distance" to a reference local volatility model. In the limit for small uncertainty aversion, this leads to explicit formulas for prices and hedging strategies in terms of the security’s cash gamma.

Suggested Citation

  • Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2015. "Hedging with Small Uncertainty Aversion," Swiss Finance Institute Research Paper Series 15-19, Swiss Finance Institute, revised Apr 2017.
  • Handle: RePEc:chf:rpseri:rp1519
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2625965
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasper Larsen & Oleksii Mostovyi & Gordan Žitković, 2018. "An expansion in the model space in the context of utility maximization," Finance and Stochastics, Springer, vol. 22(2), pages 297-326, April.
    2. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    3. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    4. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    5. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    6. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
    7. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    8. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    9. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    10. Alexander M. G. Cox & Annemarie M. Grass, 2023. "Robust option pricing with volatility term structure -- An empirical study for variance options," Papers 2312.09201, arXiv.org.
    11. Daniel Bartl & Ariel Neufeld & Kyunghyun Park, 2023. "Sensitivity of robust optimization problems under drift and volatility uncertainty," Papers 2311.11248, arXiv.org.
    12. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.

    More about this item

    Keywords

    volatility uncertainty; ambiguity aversion; option pricing and hedging; asymptotics;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.