IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v3y1999i4p451-482.html
   My bibliography  Save this article

On dynamic measures of risk

Author

Listed:
  • Ioannis Karatzas

    () (Departments of Mathematics and Statistics, Columbia University, New York, NY 10027, USA Manuscript)

  • Jaksa Cvitanic

    (Department of Statistics, Columbia University, New York, NY 10027, USA)

Abstract

In the context of complete financial markets, we study dynamic measures of the form \[ \rho(x;C):=\sup_{\nu\in\D} \inf_{\pi(\cdot)\in\A(x)}{\bf E}_\nu\left(\frac{C-X^{x, \pi}(T)}{S_0(T)}\right)^+, \] for the risk associated with hedging a given liability C at time t = T. Here x is the initial capital available at time t = 0, ${\cal A}(x)$ the class of admissible portfolio strategies, $S_0(\cdot)$ the price of the risk-free instrument in the market, ${\cal P}=\{{\bf P}_\nu\}_{\nu\in{\cal D}}$ a suitable family of probability measures, and [0,T] the temporal horizon during which all economic activity takes place. The classes ${\cal A}(x)$ and ${\cal D}$ are general enough to incorporate capital requirements, and uncertainty about the actual values of stock-appreciation rates, respectively. For this latter purpose we discuss, in addition to the above "max-min" approach, a related measure of risk in a "Bayesian" framework. Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath in a static setting, and were shown to possess certain desirable "coherence" properties.

Suggested Citation

  • Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
  • Handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:451-482 Note: received: February 1998; final version received: February 1999
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/9003004/90030451.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    4. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    5. Alan Brace & Dariusz G¬łatarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    6. J.E. Kennedy & P.J. Hunt, 1998. "Implied interest rate pricing models," Finance and Stochastics, Springer, vol. 2(3), pages 275-293.
    7. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Dynamic measures of risk; Bayesian risk; hedging; capital requirements; value-at-risk;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:451-482. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.