IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v30y2025i1p493-521.html
   My bibliography  Save this article

Risk spillover measurement of carbon trading market considering susceptible factors: A network perspective

Author

Listed:
  • Qingli Dong
  • Lanlan Lian
  • Qichuan Jiang

Abstract

An objective and robust network‐based data‐driven strategy is proposed to analyze risk spillovers in carbon markets. First, we characterize the causality network between the carbon market and potential associated markets using a data‐driven fuzzy cognitive map approach. Second, network‐based community detection is conducted to explore community structures that include carbon trading markets, and five market factors belonging to the same community as EU Allowances (EUA) are identified. Next, we conduct downside and upside‐tail measurements of EUA risk spillover levels within the community based on estimates and fits of marginal and joint distributions for different market pairs. Finally, we point out that the market factor having the most significant upper‐tail spillover effects on EUA is OILFUTURE, besides, EURUSD asset is found to be the best hedge for EUA futures among the detected market factors.

Suggested Citation

  • Qingli Dong & Lanlan Lian & Qichuan Jiang, 2025. "Risk spillover measurement of carbon trading market considering susceptible factors: A network perspective," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 493-521, January.
  • Handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:493-521
    DOI: 10.1002/ijfe.2928
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2928
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hammoudeh, Shawkat & Ajmi, Ahdi Noomen & Mokni, Khaled, 2020. "Relationship between green bonds and financial and environmental variables: A novel time-varying causality," Energy Economics, Elsevier, vol. 92(C).
    2. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    3. Wu, Libo & Zhang, Shuaishuai & Qian, Haoqi, 2022. "Distributional effects of China's National Emissions Trading Scheme with an emphasis on sectoral coverage and revenue recycling," Energy Economics, Elsevier, vol. 105(C).
    4. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    5. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    6. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    7. Shuping Shi & Stan Hurn & Peter C B Phillips, 2020. "Causal Change Detection in Possibly Integrated Systems: Revisiting the Money–Income Relationship [Energy Consumption and Economic Growth in the United States]," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 18(1), pages 158-180.
    8. Koop, Gary & Tole, Lise, 2013. "Modeling the relationship between European carbon permits and certified emission reductions," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 166-181.
    9. Bolton, Patrick & Kacperczyk, Marcin, 2021. "Do investors care about carbon risk?," Journal of Financial Economics, Elsevier, vol. 142(2), pages 517-549.
    10. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    11. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    12. Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
    13. de Mendonça, Helder Ferreira & Silva, Rafael Bernardo da, 2018. "Effect of banking and macroeconomic variables on systemic risk: An application of ΔCOVAR for an emerging economy," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 141-157.
    14. Aloui, Riadh & Ben Aïssa, Mohamed Safouane & Nguyen, Duc Khuong, 2013. "Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 719-738.
    15. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    16. Ferreira, Fernando A.F. & Jalali, Marjan S. & Ferreira, João J.M., 2016. "Integrating qualitative comparative analysis (QCA) and fuzzy cognitive maps (FCM) to enhance the selection of independent variables," Journal of Business Research, Elsevier, vol. 69(4), pages 1471-1478.
    17. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    18. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
    20. Bonaccolto, Giovanni & Caporin, Massimiliano & Paterlini, Sandra, 2019. "Decomposing and backtesting a flexible specification for CoVaR," Journal of Banking & Finance, Elsevier, vol. 108(C).
    21. Xu, Qifa & Jin, Bei & Jiang, Cuixia, 2021. "Measuring systemic risk of the Chinese banking industry: A wavelet-based quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    22. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    23. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    24. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    25. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    26. Don Bredin and John Parsons, 2016. "Why is Spot Carbon so Cheap and Future Carbon so Dear? The Term Structure of Carbon Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    27. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    28. Yanbin Li & Dan Nie & Bingkang Li & Xiyu Li, 2020. "The Spillover Effect between Carbon Emission Trading (CET) Price and Power Company Stock Price in China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    29. Dan Nie & Yanbin Li & Xiyu Li, 2021. "Dynamic Spillovers and Asymmetric Spillover Effect between the Carbon Emission Trading Market, Fossil Energy Market, and New Energy Stock Market in China," Energies, MDPI, vol. 14(19), pages 1-22, October.
    30. Jiao, Lei & Liao, Yin & Zhou, Qing, 2018. "Predicting carbon market risk using information from macroeconomic fundamentals," Energy Economics, Elsevier, vol. 73(C), pages 212-227.
    31. Emmanouil N. Karimalis & Nikos K. Nomikos, 2018. "Measuring systemic risk in the European banking sector: a copula CoVaR approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(11), pages 944-975, July.
    32. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    33. Frank Venmans, 2015. "Capital market response to emission allowance prices: a multivariate GARCH approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 577-620, October.
    34. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    35. repec:dau:papers:123456789/4210 is not listed on IDEAS
    36. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    37. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    38. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    39. Zhang, Chen & Yang, Yu & Yun, Po, 2020. "Risk measurement of international carbon market based on multiple risk factors heterogeneous dependence," Finance Research Letters, Elsevier, vol. 32(C).
    40. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    41. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    42. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    43. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    44. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    45. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Relationship between Carbon, Commodity and Financial Markets: A Copula Analysis," The Economic Record, The Economic Society of Australia, vol. 87(s1), pages 105-124, September.
    46. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    47. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    2. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    3. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    4. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    5. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    6. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    7. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    8. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    9. Bing‐Yue Liu & Qiang Ji & Duc Khuong Nguyen & Ying Fan, 2021. "Dynamic dependence and extreme risk comovement: The case of oil prices and exchange rates," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2612-2636, April.
    10. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
    11. Panagiotis G. Papaioannou & George P. Papaioannou & Kostas Siettos & Akylas Stratigakos & Christos Dikaiakos, 2017. "Dynamic Conditional Correlation between Electricity and Stock markets during the Financial Crisis in Greece," Papers 1708.07063, arXiv.org.
    12. Rehman, Mobeen Ur & Katsiampa, Paraskevi & Zeitun, Rami & Vo, Xuan Vinh, 2023. "Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies," Emerging Markets Review, Elsevier, vol. 55(C).
    13. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    14. Fang Zhang & Zhengjun Zhang, 2020. "The tail dependence of the carbon markets: The implication of portfolio management," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    15. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    16. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    17. Ahonen, Elena & Corbet, Shaen & Goodell, John W. & Günay, Samet & Larkin, Charles, 2022. "Are carbon futures prices stable? New evidence during negative oil," Finance Research Letters, Elsevier, vol. 47(PB).
    18. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
    19. Tian, Maoxi & Ji, Hao, 2022. "GARCH copula quantile regression model for risk spillover analysis," Finance Research Letters, Elsevier, vol. 44(C).
    20. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:493-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.